scholarly journals Neither LAT nor Open Reading Frame P Mutations Increase Expression of Spliced or Intron-Containing ICP0 Transcripts in Mouse Ganglia Latently Infected with Herpes Simplex Virus

2002 ◽  
Vol 76 (10) ◽  
pp. 4764-4772 ◽  
Author(s):  
Shun-Hua Chen ◽  
Lily Yeh Lee ◽  
David A. Garber ◽  
Priscilla A. Schaffer ◽  
David M. Knipe ◽  
...  

ABSTRACT Latent infections by herpes simplex virus are characterized by repression of productive-cycle gene expression. Several hypotheses to explain this repression involve inhibition of expression of the immediate-early gene activator ICP0 during latency. To address these hypotheses, we developed quantitative reverse transcriptase-PCR assays that detected spliced and intron-containing ICP0 transcripts in mouse ganglia latently infected with wild-type virus. In these ganglia, the numbers of spliced ICP0 transcripts correlated better with the numbers of transcripts from the immediate-early gene encoding ICP4 than with those from the early gene encoding thymidine kinase. There were fewer spliced than intron-containing ICP0 transcripts on average, with considerable ganglion-to-ganglion variation. We then investigated whether ICP0 expression in latently infected ganglia is reduced by the latency-associated transcripts (LATs) and whether splicing of ICP0 transcripts is inhibited by the product of open reading frame (ORF) P. A LAT deletion mutation which essentially eliminates expression of the major LATs did not appreciably increase levels of ICP0 transcripts. LAT deletion mutants did, however, appear to express reduced levels of intron-containing ICP0 transcripts. ORF P mutations did not alter levels of ICP0 transcripts in a manner consistent with inhibition of ICP0 splicing by ORF P. Although these results argue against antisense inhibition of ICP0 expression by LATs or inhibition of ICP0 splicing by ORF P, they are consistent with the possibilities of a block between immediate-early and early gene expression and regulation of spliced versus intron-containing ICP0 transcripts in latently infected ganglia.

1985 ◽  
Vol 5 (8) ◽  
pp. 1997-2008 ◽  
Author(s):  
N A DeLuca ◽  
P A Schaffer

To better define the activities on herpes simplex virus type 1 gene expression of temperature-sensitive and wild-type forms of the transcriptional regulatory protein ICP4, regulatory sequences from immediate-early, early, and late herpes simplex virus genes were fused to the gene for chloramphenicol acetyltransferase (CAT). These constructs were used in trans induction and cotransfection experiments with wild-type and temperature-sensitive mutant alleles of ICP4. The ICP4 genes used in this study were cloned from the KOS strain (wild type) and two phenotypically distinct temperature-sensitive ICP4 mutants, tsB32 and tsL14 (DeLuca et al., J. Virol. 52:767-776, 1984), both alone and in conjunction with three other immediate-early genes. The latter series of plasmids was used to assess the influence of additional immediate-early gene products on gene expression in the presence of a given ICP4 allele. The results of this study demonstrate that the phenotypes of these ICP4 mutants observed in cell culture at the nonpermissive temperature were determined in part by activities associated with the mutant ICP4 polypeptides and that these activities differed from those of wild-type ICP4. Low levels of wild-type ICP4 had a marginal but reproducible stimulatory effect on immediate-early CAT gene expression, especially the pIE4/5CAT chimera. This effect was diminished with increasing quantities of ICP4, suggesting an inhibitory role for the wild-type form of the protein. The ICP4 mutants had a strong stimulatory effect on immediate-early CAT expression, consistent with their phenotypes at 39 degrees C. The mutant forms of the ICP4 polypeptide differed in their ability to induce CAT activity from an early chimeric gene. Thus, the tsL14 form of ICP4 was effective in early gene induction (i.e., ptkCAT was induced), whereas the ICP4 derived from tsB32 was slightly inhibitory. Cotransfection of tsB32 ICP4 simultaneously with other immediate-early genes resulted in a marginal increase in ptkCAT induction. This induction was enhanced when the gene for ICP4 was inactivated by restriction enzyme cleavage, substantiating the inhibitory effect of the tsB32 form of ICP4. The two mutant ICP4 genes (tsB32 and tsL14) were unable to trans-activate either of the late CAT constructs (p5CAT and pL42CAT) tested. Cotransfecting tsL14 ICP4 with the other immediate-early genes resulted in activation of p5CAT but not pL42CAT. Taken together, these studies demonstrate that (i) low levels of wild-type ICP4 have stimulatory effect on immediate-early promoters and that higher concentrations of wild-type ICP4 have an inhibitory effect on these promoters, (ii) isolated mutant form of ICP4 exhibit activities that reflect the phenotypes of the mutants from which they were isolated, and (iii) immediate-early gene products other than ICP4 are involved in determining the distinct phenotypes of the two mutants at 39 degrees Celsius.


1998 ◽  
Vol 72 (7) ◽  
pp. 6056-6064 ◽  
Author(s):  
Yijan E. Chang ◽  
Laura Menotti ◽  
Felix Filatov ◽  
Gabriella Campadelli-Fiume ◽  
Bernard Roizman

ABSTRACT An antibody made against the herpes simplex virus 1 US5 gene predicted to encode glycoprotein J was found to react strongly with two proteins, one with an apparent M r of 23,000 and mapping in the S component and one with a herpes simplex virus protein with an apparent M r of 43,000. The antibody also reacted with herpes simplex virus type 2 proteins forming several bands with apparent M rs ranging from 43,000 to 50,000. Mapping studies based on intertypic recombinants, analyses of deletion mutants, and ultimately, reaction of the antibody with a chimeric protein expressed by in-frame fusion of the glutathione S-transferase gene to an open reading frame antisense to the gene encoding glycoprotein B led to the definitive identification of the new open reading frame, designated UL27.5. Sequence analyses indicate the conservation of a short amino acid sequence common to US5 and UL27.5. The coding sequence of the herpes simplex virus UL27.5 open reading frame is strongly homologous to the sequence encoding the carboxyl terminus of the herpes simplex virus 2 UL27.5 sequence. However, both open reading frames could encode proteins predicted to be significantly larger than the mature UL27.5 proteins accumulating in the infected cells, indicating that these are either processed posttranslationally or synthesized from alternate, nonmethionine-initiating codons. The UL27.5 gene expression is blocked by phosphonoacetate, indicating that it is a γ2 gene. The product accumulated predominantly in the cytoplasm. UL27.5 is the third open reading frame found to map totally antisense to another gene and suggests that additional genes mapping antisense to known genes may exist.


2021 ◽  
Author(s):  
Adam W Whisnant ◽  
Oliver Mathias Dyck Dionisi ◽  
Arnhild Grothey ◽  
Julia M Rappold ◽  
Ana Luiza Marante ◽  
...  

Transcriptional activity of RNA polymerase II (Pol II) is orchestrated by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes Simplex Virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) of the Pol II CTD by targeting CDK9. The functional implications of this are poorly understood. Here, we report that HSV-1 also induces a global loss of serine 7 phosphorylation (pS7). This effect was dependent on the expression of the two viral immediate-early proteins, ICP22 and ICP27. While lytic HSV-1 infection results in efficient Pol II degradation late in infection, we show that pS2/S7 loss precedes the drop in Pol II level. Interestingly, mutation of the RPB1 polyubiquitination site mutation K1268, which prevents proteasomal RPB1 degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained much higher overall RPB1 protein levels even at late times of infection, indicating that this pathway mediates bulk Pol II protein loss late in infection but is not involved in early CTD dysregulation. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for production of viral proteins, with Ser2 facilitating viral immediate-early gene expression and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments by immunofluorescence. These data expand the known means that HSV-1 employs to create pro-viral transcriptional environments at the expense of host responses.


2008 ◽  
Vol 82 (19) ◽  
pp. 9337-9344 ◽  
Author(s):  
Esra Fakioglu ◽  
Sarah S. Wilson ◽  
Pedro M. M. Mesquita ◽  
Ehsan Hazrati ◽  
Natalia Cheshenko ◽  
...  

ABSTRACT Secretory leukocyte protease inhibitor (SLPI), an anti-inflammatory mediator of mucosal immunity, inhibits human immunodeficiency virus (HIV) and herpes simplex virus (HSV) in cell culture. Epidemiological studies demonstrate that higher concentrations of SLPI in mucosal secretions are associated with a reduced risk of HIV transmission. The current studies were designed to test the hypothesis that HSV triggers a loss of SLPI to evade innate immunity and that this response may contribute to the increased risk of HIV infection in the setting of HSV infection. Exposure of human cervical epithelial cells to HSV-1 or HSV-2, but not HIV or vesicular stomatitis virus, triggered a significant and sustained reduction in SLPI levels. The reduction persisted when cells were infected in the presence of acyclovir but not following infection with UV-inactivated virus, indicating that viral gene expression, but not replication, is required. Reverse transcriptase PCR studies demonstrated that the loss of SLPI is mediated by downregulation of gene expression. SLPI downregulation was associated with activation of NF-κB signaling pathways and upregulation of proinflammatory cytokines, consistent with the known inhibitor effects of SLPI on NF-κB pathways. The downregulation mapped to viral early-gene expression, as variants impaired in expression of the ICP4 or ICP0 immediate-early gene failed to downregulate SLPI or activate NF-κB. Together, these results identify a novel role for HSV immediate-early-gene expression in regulating mucosal immune responses.


1999 ◽  
Vol 73 (8) ◽  
pp. 6618-6625 ◽  
Author(s):  
S. K. Thomas ◽  
G. Gough ◽  
D. S. Latchman ◽  
R. S. ◽  
Coffin

ABSTRACT Herpes simplex virus types 1 and 2 (HSV1 and HSV2) enter and reactivate from latency in sensory neurons, although the events governing these processes are little understood. During latency, only the latency-associated transcripts (LATs) are produced. However, although the LAT RNAs were described ≈10 years ago, their function remains ambiguous. Mutations affecting the LATs have minimal effects other than a small reduction in establishment of and reactivation from latency in some cases. Mutations in putative LAT-contained open reading frames (ORFs) have so far shown no effect. The LATs consist of a large species from which smaller (≈2 kb), nuclear, nonlinear LATs which are abundant during latency are spliced. Thus, translation of ORFs in these smaller LATs would not usually be expected to be possible, and if expressed at all, their expression might be tightly regulated. Here we show that deregulated expression of the largest HSV1 2-kb LAT-contained ORF in various cells of neuronal and nonneuronal origin greatly enhances virus growth in a manner specific to HSV1—the HSV1 LAT ORF has no effect on the growth of HSV2. Similar results of enhanced growth were found when the HSV1 LAT ORF was constitutively expressed from within the HSV1 genome. The mechanism of LAT ORF action was strongly suggested to be by substituting for deficiencies in immediate-early (IE) gene expression (particularly ICP0), because deregulated LAT ORF expression, as well as enhancing wild-type virus growth, was also found to allow efficient growth of viruses with mutations in ICP0 or VMW65. Such viruses otherwise exhibit considerable growth defects. IE gene expression deficiencies are often the block to productive infection in nonpermissive cells and are also evident during latency. These results, which we show to be protein- rather than RNA-mediated effects, strongly suggest a function of the tightly regulated expression of a LAT ORF-encoded protein in the reactivation from HSV latency.


Sign in / Sign up

Export Citation Format

Share Document