scholarly journals A Small Molecule Inhibits and Misdirects Assembly of Hepatitis B Virus Capsids

2002 ◽  
Vol 76 (10) ◽  
pp. 4848-4854 ◽  
Author(s):  
Adam Zlotnick ◽  
Pablo Ceres ◽  
Sushmita Singh ◽  
Jennifer M. Johnson

ABSTRACT Hepatitis B virus (HBV) capsids play an important role in viral nucleic acid metabolism and other elements of the virus life cycle. Misdirection of capsid assembly (leading to formation of aberrant particles) may be a powerful approach to interfere with virus production. HBV capsids can be assembled in vitro from the dimeric capsid protein. We show that a small molecule, bis-ANS, binds to capsid protein, inhibiting assembly of normal capsids and promoting assembly of noncapsid polymers. Using equilibrium dialysis to investigate binding of bis-ANS to free capsid protein, we found that only one bis-ANS molecule binds per capsid protein dimer, with an association energy of −28.0 ± 2.0 kJ/mol (−6.7 ± 0.5 kcal/mol). Bis-ANS inhibited in vitro capsid assembly induced by ionic strength as observed by light scattering and size exclusion chromatography. The binding energy of bis-ANS for capsid protein calculated from assembly inhibition data was −24.5 ± 0.9 kJ/mol (−5.9 ± 0.2 kcal/mol), essentially the same binding energy observed in studies of unassembled protein. These data indicate that capsid protein bound to bis-ANS did not participate in assembly; this mechanism of assembly inhibition is analogous to competitive or noncompetitive inhibition of enzymes. While assembly of normal capsids is inhibited, our data suggest that bis-ANS leads to formation of noncapsid polymers. Evidence of aberrant polymers was identified by light scattering and electron microscopy. We propose that bis-ANS acts as a molecular “wedge” that interferes with normal capsid protein geometry and capsid formation; such wedges may represent a new class of antiviral agent.

2020 ◽  
Vol 64 (5) ◽  
Author(s):  
Jan Martin Berke ◽  
Pascale Dehertogh ◽  
Karen Vergauwen ◽  
Wendy Mostmans ◽  
Koen Vandyck ◽  
...  

ABSTRACT Capsid assembly is a critical step in the hepatitis B virus (HBV) life cycle, mediated by the core protein. Core is a potential target for new antiviral therapies, the capsid assembly modulators (CAMs). JNJ-56136379 (JNJ-6379) is a novel and potent CAM currently in phase II trials. We evaluated the mechanisms of action (MOAs) and antiviral properties of JNJ-6379 in vitro. Size exclusion chromatography and electron microscopy studies demonstrated that JNJ-6379 induced the formation of morphologically intact viral capsids devoid of genomic material (primary MOA). JNJ-6379 accelerated the rate and extent of HBV capsid assembly in vitro. JNJ-6379 specifically and potently inhibited HBV replication; its median 50% effective concentration (EC50) was 54 nM (HepG2.117 cells). In HBV-infected primary human hepatocytes (PHHs), JNJ-6379, when added with the viral inoculum, dose-dependently reduced extracellular HBV DNA levels (median EC50 of 93 nM) and prevented covalently closed circular DNA (cccDNA) formation, leading to a dose-dependent reduction of intracellular HBV RNA levels (median EC50 of 876 nM) and reduced antigen levels (secondary MOA). Adding JNJ-6379 to PHHs 4 or 5 days postinfection reduced extracellular HBV DNA and did not prevent cccDNA formation. Time-of-addition PHH studies revealed that JNJ-6379 most likely interfered with postentry processes. Collectively, these data demonstrate that JNJ-6379 has dual MOAs in the early and late steps of the HBV life cycle, which is different from the MOA of nucleos(t)ide analogues. JNJ-6379 is in development for chronic hepatitis B treatment and may translate into higher HBV functional cure rates.


2011 ◽  
Vol 7 (11) ◽  
pp. e1002388 ◽  
Author(s):  
Chao Chen ◽  
Joseph Che-Yen Wang ◽  
Adam Zlotnick

2008 ◽  
Vol 416 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Hang Kang ◽  
Jaehoon Yu ◽  
Guhung Jung

The HBV (hepatitis B virus) core is a phosphoprotein whose assembly, replication, encapsidation and localization are regulated by phosphorylation. It is known that PKC (protein kinase C) regulates pgRNA (pregenomic RNA) encapsidation by phosphorylation of the C-terminus of core, which is a component packaged into capsid. Neither the N-terminal residue phosphorylated by PKC nor the role of the C-terminal phosphorylation have been cleary defined. In the present study we found that HBV Cp149 (core protein C-terminally truncated at amino acid 149) expressed in Escherichia coli was phosphorylated by PKC at Ser106. PKC-mediated phosphorylation increased core affinity, as well as assembly and capsid stability. In vitro phosphorylation with core mutants (S26A, T70A, S106A and T114A) revealed that the Ser106 mutation inhibited phosphorylation of core by PKC. CD analysis also revealed that PKC-mediated phosphorylation stabilized the secondary structure of capsid. When either pCMV/FLAG-Cp149[WT (wild-type)] or pCMV/FLAG-S106A Cp149 was transfected into Huh7 human hepatoma cells, mutant capsid level was decreased by 2.06-fold with the S106A mutant when compared with WT, although the same level of total protein was expressed in both cases. In addition, when pUC1.2x and pUC1.2x/S106A were transfected, mutant virus titre was decreased 2.31-fold compared with WT virus titre. In conclusion, PKC-mediated phosphorylation increased capsid assembly, stability and structural stability.


2008 ◽  
Vol 82 (20) ◽  
pp. 10262-10270 ◽  
Author(s):  
Christina Bourne ◽  
Sejin Lee ◽  
Bollu Venkataiah ◽  
Angela Lee ◽  
Brent Korba ◽  
...  

ABSTRACT The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors.


2021 ◽  
Author(s):  
Haitao Liu ◽  
Ji Xi ◽  
Jianming Hu

Hepatitis B virus (HBV) capsid or core protein (HBc) consists of an N-terminal domain (NTD) and C-terminal domain (CTD) connected by a short linker peptide. Dynamic phosphorylation and dephosphorylation of HBc regulate its multiple functions in capsid assembly and viral replication. The cellular cyclin-dependent kinase 2 (CDK2) plays a major role in HBc phosphorylation and furthermore, is incorporated into the viral capsid, accounting for most of the “endogenous kinase” activity associated with the capsid. The packaged CDK2 is thought to play a role in phosphorylating HBc to trigger nucleocapsid disassembly (uncoating), an essential step during viral infection. However, little is currently known on how CDK2 is recruited and packaged into the capsid. We have now identified three RXL motifs, in the HBc NTD, known as cyclin docking motifs (CDMs), which mediates the interactions of various CDK substrates/regulators with CDK/cyclin complexes. Mutations of the CDMs in the HBc NTD reduced CTD phosphorylation and diminished CDK2 packaging into the capsid. Also, the CDM mutations showed little effects on capsid assembly and pregenomic RNA (pgRNA) packaging but impaired the integrity of mature nucleocapsids. Furthermore, the CDM mutations blocked covalently closed circular DNA (CCC DNA) formation during infection while having no effect on or enhancing CCC DNA formation via intracellular amplification. These results indicate that the HBc NTD CDMs play a role in CDK2 recruitment and packaging, which, in turn, is important for productive infection. Author Summary Hepatitis B virus (HBV) is an important global human pathogen and persistently infects hundreds of millions of people, who are at high risk of cirrhosis and liver cancer. HBV capsid packages a host cell protein kinase, the cyclin-dependent kinase 2 (CDK2), which is thought to be required to trigger disassembly of the viral nucleocapsid during infection by phosphorylating the capsid protein, a prerequisite for successful infection. We have identified docking sites on the capsid protein for recruiting CDK2, in complex with its cyclin partner, to facilitate capsid protein phosphorylation and CDK2 packaging. Mutations of these docking sites reduced capsid protein phosphorylation, impaired CDK2 packaging into HBV capsids, and blocked HBV infection. These results provide novel insights regarding CDK2 packaging into HBV capsids and the role of CDK2 in HBV infection and should facilitate the development of antiviral drugs that target the HBV capsid protein.


mSphere ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Andrew D. Huber ◽  
Jennifer J. Wolf ◽  
Dandan Liu ◽  
Anna T. Gres ◽  
Jing Tang ◽  
...  

ABSTRACTHeteroaryldihydropyrimidines (HAPs) are compounds that inhibit hepatitis B virus (HBV) replication by modulating viral capsid assembly. While their biophysical effects on capsid assemblyin vitrohave been previously studied, the effect of HAP treatment on capsid protein (Cp) in individual HBV-infected cells remains unknown. We report here that the HAP Bay 38-7690 promotes aggregation of recombinant Cpin vitroand causes a time- and dose-dependent decrease of Cp in infected cells, consistent with previously studied HAPs. Interestingly, immunofluorescence analysis showed Cp aggregating in nuclear foci of Bay 38-7690-treated infected cells in a time- and dose-dependent manner. We found these foci to be associated with promyelocytic leukemia (PML) nuclear bodies (NBs), which are structures that affect many cellular functions, including DNA damage response, transcription, apoptosis, and antiviral responses. Cp aggregation is not an artifact of the cell system used, as it is observed in HBV-expressing HepAD38 cells, in HepG2 cells transfected with an HBV-expressing plasmid, and in HepG2-NTCP cells infected with HBV. Use of a Cp overexpression vector without HBV sequences shows that aggregation is independent of viral replication, and use of an HBV-expressing plasmid harboring a HAP resistance mutation in Cp abrogated the aggregation, demonstrating that the effect is due to direct compound-Cp interactions. These studies provide novel insight into the effects of HAP-based treatment at a single-cell level.IMPORTANCEDespite the availability of effective vaccines and treatments, HBV remains a significant global health concern, with more than 240 million individuals chronically infected. Current treatments are highly effective at controlling viral replication and disease progression but rarely cure infections. Therefore, much emphasis is being placed on finding therapeutics with new drug targets, such as viral gene expression, covalently closed circular DNA formation and stability, capsid formation, and host immune modulators, with the ultimate goal of an HBV cure. Understanding the mechanisms by which novel antiviral agents act will be imperative for the development of curative HBV therapies.


2006 ◽  
Vol 24 (3) ◽  
pp. 358-362 ◽  
Author(s):  
Stephen J Stray ◽  
Jennifer M Johnson ◽  
Benjamin G Kopek ◽  
Adam Zlotnick

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 770
Author(s):  
Sameera Senaweera ◽  
Haijuan Du ◽  
Huanchun Zhang ◽  
Karen A. Kirby ◽  
Philip R. Tedbury ◽  
...  

Hepatitis B virus (HBV) capsid assembly modulators (CpAMs) have shown promise as potent anti-HBV agents in both preclinical and clinical studies. Herein, we report our efforts in identifying novel CpAM hits via a structure-based virtual screening against a small molecule protein-protein interaction (PPI) library, and pharmacophore-guided compound design and synthesis. Curated compounds were first assessed in a thermal shift assay (TSA), and the TSA hits were further evaluated in an antiviral assay. These efforts led to the discovery of two structurally distinct scaffolds, ZW-1841 and ZW-1847, as novel HBV CpAM hits, both inhibiting HBV in single-digit µM concentrations without cytotoxicity at 100 µM. In ADME assays, both hits displayed extraordinary plasma and microsomal stability. Molecular modeling suggests that these hits bind to the Cp dimer interfaces in a mode well aligned with known CpAMs.


Sign in / Sign up

Export Citation Format

Share Document