scholarly journals Association of the Herpes Simplex Virus Type 1 Us11 Gene Product with the Cellular Kinesin Light-Chain-Related Protein PAT1 Results in the Redistribution of Both Polypeptides

2003 ◽  
Vol 77 (17) ◽  
pp. 9192-9203 ◽  
Author(s):  
Louisa Benboudjema ◽  
Matthew Mulvey ◽  
Yuehua Gao ◽  
Sanjay W. Pimplikar ◽  
Ian Mohr

ABSTRACT The herpes simplex virus type 1 (HSV-1) Us11 gene encodes a multifunctional double-stranded RNA (dsRNA)-binding protein that is expressed late in infection and packaged into the tegument layer of the virus particle. As a tegument component, Us11 associates with nascent capsids after its synthesis late in the infectious cycle and is delivered into newly infected cells at times prior to the expression of viral genes. Us11 is also an abundant late protein that regulates translation through its association with host components and contains overlapping nucleolar retention and nuclear export signals, allowing its accumulation in both nucleoli and the cytosol. Thus, at various times during the viral life cycle and in different intracellular compartments, Us11 has the potential to execute discrete tasks. The analysis of these functions, however, is complicated by the fact that Us11 is not essential for viral replication in cultured cells. To discover new host targets for the Us11 protein, we searched for cellular proteins that interact with Us11 and have identified PAT1 as a Us11-binding protein according to multiple, independent experimental criteria. PAT1 binds microtubules, participates in amyloid precursor protein trafficking, and has homology to the kinesin light chain (KLC) in its carboxyl terminus. The carboxyl-terminal dsRNA-binding domain of Us11, which also contains the nucleolar retention and nuclear export signals, binds PAT1, whereas 149 residues derived from the KLC homology region of PAT1 are important for binding to Us11. Both PAT1 and Us11 colocalize within a perinuclear area in transiently transfected and HSV-1-infected cells. The 149 amino acids derived from the KLC homology region are required for colocalization of the two polypeptides. Furthermore, although PAT1 normally accumulates in the nuclear compartment, Us11 expression results in the exclusion of PAT1 from the nucleus and its accumulation in the perinuclear space. Similarly, Us11 does not accumulate in the nucleoli of infected cells that overexpress PAT1. These results establish that Us11 and PAT1 can associate, resulting in an altered subcellular distribution of both polypeptides. The association between PAT1, a cellular trafficking protein with homology to KLC, and Us11, along with a recent report demonstrating an interaction between Us11 and the ubiquitous kinesin heavy chain (R. J. Diefenbach et al., J. Virol. 76:3282-3291, 2002), suggests that these associations may be important for the intracellular movement of viral components.

2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


2000 ◽  
Vol 74 (16) ◽  
pp. 7362-7374 ◽  
Author(s):  
Scott M. Bunnell ◽  
Stephen A. Rice

ABSTRACT ICP27 is an essential herpes simplex virus type 1 (HSV-1) immediate-early protein that regulates viral gene expression by poorly characterized mechanisms. Previous data suggest that its carboxyl (C)-terminal portion is absolutely required for productive viral infection. In this study, we isolated M16R, a second-site revertant of a viral ICP27 C-terminal mutant. M16R harbors an intragenic reversion, as demonstrated by the fact that its cloned ICP27 allele can complement the growth of an HSV-1 ICP27 deletion mutant. DNA sequencing demonstrated that the intragenic reversion is a frameshift alteration in a homopolymeric run of C residues at codons 215 to 217. This results in the predicted expression of a truncated, 289-residue molecule bearing 72 novel C-terminal residues derived from the +1 reading frame. Consistent with this, M16R expresses an ICP27-related molecule of the predicted size in the nuclei of infected cells. Transfection-based viral complementation assays confirmed that the truncated, frameshifted protein can partially substitute for ICP27 in the context of viral infection. Surprisingly, its novel C-terminal residues are required for this activity. To see if the frameshift mutation is all that is required for M16R's viability, we re-engineered the M16R ICP27 allele and inserted it into a new viral background, creating the HSV-1 mutant M16exC. An additional mutant, exCd305, was constructed which possesses the frameshift in the context of an ICP27 gene with the C terminus deleted. We found that both M16exC and exCd305 are nonviable in Vero cells, suggesting that one or more extragenic mutations are also required for the viability of M16R. Consistent with this interpretation, we isolated two viable derivatives ofexCd305 which grow productively in Vero cells despite being incapable of encoding the C-terminal portion of ICP27. Studies of viral DNA synthesis in mutant-infected cells indicated that the truncated, frameshifted ICP27 protein can enhance viral DNA replication. In summary, our results demonstrate that the C-terminal portion of ICP27, conserved widely in herpesviruses and previously believed to be absolutely essential, is dispensable for HSV-1 lytic replication in the presence of compensatory genomic mutations.


2005 ◽  
Vol 150 (11) ◽  
pp. 2387-2395 ◽  
Author(s):  
E. Morency ◽  
Y. Couté ◽  
J. Thomas ◽  
P. Texier ◽  
P. Lomonte

2008 ◽  
Vol 82 (13) ◽  
pp. 6654-6666 ◽  
Author(s):  
Valerie G. Preston ◽  
Jill Murray ◽  
Christopher M. Preston ◽  
Iris M. McDougall ◽  
Nigel D. Stow

ABSTRACT Studies on the herpes simplex virus type 1 UL25-null mutant KUL25NS have shown that the capsid-associated UL25 protein is required at a late stage in the encapsidation of viral DNA. Our previous work on UL25 with the UL25 temperature-sensitive (ts) mutant ts1204 also implicated UL25 in a role at very early times in the virus growth cycle, possibly at the stage of penetration of the host cell. We have reexamined this mutant and discovered that it had an additional ts mutation elsewhere in the genome. The ts1204 UL25 mutation was transferred into wild-type (wt) virus DNA, and the UL25 mutant ts1249 was isolated and characterized to clarify the function of UL25 at the initial stages of virus infection. Indirect immunofluorescence assays and in situ hybridization analysis of virus-infected cells revealed that the mutant ts1249 was not impaired in penetration of the host cell but had an uncoating defect at the nonpermissive temperature. When ts1249-infected cells were incubated initially at the permissive temperature to allow uncoating of the viral genome and subsequently transferred to the restrictive temperature, a DNA-packaging defect was evident. The results suggested that ts1249, like KUL25NS, had a block at a late stage of DNA packaging and that the packaged genome was shorter than the full-length genome. Examination of ts1249 capsids produced at the nonpermissive temperature revealed that, in comparison with wt capsids, they contained reduced amounts of UL25 protein, thereby providing a possible explanation for the failure of ts1249 to package full-length viral DNA.


2007 ◽  
Vol 82 (5) ◽  
pp. 2339-2349 ◽  
Author(s):  
Padmavathi Sampath ◽  
Neal A. DeLuca

ABSTRACT The binding of herpes simplex virus type 1 ICP4, TATA-binding protein (TBP), and RNA polymerase II (polII) to the promoter regions of representative immediate-early (IE) (ICP0), early (E) (thymidine kinase [tk]), and late (L) (glycoprotein C [gC]) genes on the viral genome was examined as a function of time postinfection, viral DNA replication, cis-acting sites for TFIID in the tk and gC promoters, and genetic background of ICP4. The binding of TBP and polII to the IE ICP0 promoter was independent of the presence of ICP4, whereas the binding of TBP and polII to the tk and gC promoters occurred only when ICP4 also bound to the promoters, suggesting that the presence of ICP4 at the promoters of E and L genes in virus-infected cells is crucial for the formation of transcription complexes on these promoters. When the TATA box of the tk promoter or the initiator element (INR) of the gC promoter was mutated, a reduction in the amount of TBP and polII binding was observed. However, a reduction in the amount of ICP4 binding to the promoters was also observed, suggesting that the binding of TBP-containing complexes and ICP4 is cooperative. The binding of ICP4, TBP, and polII was also observed on the gC promoter at early times postinfection or when DNA synthesis was inhibited, suggesting that transcription complexes may be formed early on L promoters and that additional events or proteins are required for expression. The ability to form these early complexes on the gC promoter required the DNA-binding domain but in addition required the carboxyl-terminal 524 amino acids of ICP4, which is missing the virus n208. This region was not required to form TBP- and polII-containing complexes on the tk promoter. n208 activates E but not L genes during viral infection. These data suggest that a region of ICP4 may differentiate between forming TBP- and polII-containing complexes on E and L promoters.


Sign in / Sign up

Export Citation Format

Share Document