scholarly journals Murid Herpesvirus 4 Strain 68 M2 Protein Is a B-Cell-Associated Antigen Important for Latency but Not Lymphocytosis

2003 ◽  
Vol 77 (17) ◽  
pp. 9700-9709 ◽  
Author(s):  
Alastair I. Macrae ◽  
Edward J. Usherwood ◽  
S. Mazher Husain ◽  
Emilio Flaño ◽  
In-Jeong Kim ◽  
...  

ABSTRACT This work describes analyses of the function of the murid herpesvirus 4 strain 68 (MHV-68) M2 gene. A frameshift mutation was made in the M2 open reading frame that caused premature termination of translation of M2 after amino acid residue 90. The M2 mutant showed no defect in productive replication in vitro or in lungs after infection of mice. Likewise, the characteristic transient increase in spleen cell number, Vβ4 T-cell-receptor-positive CD8+ T-cell mononucleosis, and establishment of latency were unaffected. However, the M2 mutant virus was defective in its ability to cause the transient sharp rise in latently infected cells normally seen in the spleen after infection of mice. We also demonstrate that expression of M2 is restricted to B cells in the spleen and that M2 encodes a 30-kDa protein localizing predominantly in the cytoplasm and plasma membrane of B cells.

1997 ◽  
Vol 186 (5) ◽  
pp. 631-643 ◽  
Author(s):  
Matthew C. Cook ◽  
Antony Basten ◽  
Barbara Fazekas de St. Groth

T-dependent B cell responses in the spleen are initiated in the outer periarteriolar lymphoid sheath (PALS) and culminate in the generation of proliferative foci and germinal center reactions. By pulsing anti–hen egg lysozyme (HEL) immunoglobulin transgenic (IgTg) B cells with various concentrations of HEL in vitro before adoptive transfer into normal recipients, it was shown that a critical number of B cell receptors (BCRs) must be ligated for B cells to undergo arrest in the outer PALS. T cell help was manipulated independently of the BCR stimulus by incubating B cells expressing the appropriate major histocompatibility complex class II antigen with a peptide recognized by CD4+ TCR Tg T cells. B cells which either failed to arrest in the outer PALS due to a subthreshold BCR stimulus, or arrested only transiently due to the brevity of the BCR stimulus, underwent an abortive response within the follicles when provided with T cell help. In contrast, naive B cells stimulated by a sustained, suprathreshold concentration of either foreign or self-antigen and given T cell help, proliferated in the outer PALS and then differentiated. Outer PALS arrest was not influenced by the nature of the B cells occupying the follicle, but appeared to be determined solely by the magnitude of BCR stimulation. Thus antigen-pulsed B cells arrested in the outer PALS in an identical manner irrespective of whether the follicles comprised a population of normal B cells with multiple specificities, a monoclonal naive population, or a monoclonal population of tolerant B cells. In addition, tolerant B cells were found to relocate from the follicles to the outer PALS of HEL/anti-HEL double Tg mice in which the concentration of soluble self-antigen had been increased by zinc feeding. Similarly, when anti-HEL Tg mice were crossed with a second HEL Tg strain expressing a higher concentration of soluble HEL, the tolerant anti-HEL Tg B cells were located constitutively in the outer PALS. Thus, subtle variations in antigen concentration resulted in dramatic changes in positioning of B cells within the spleen. A series of mixed bone marrow chimeras in which the effective antigen concentration was inversely related to the number of self-reactive B cells due to absorption of antigen by transgene-encoded membrane and secreted Ig, was used to confirm that alteration in B cell position previously attributed to changes in follicular composition could be explained on the basis of available antigen concentration, rather than the diversity of the repertoire.


1996 ◽  
Vol 16 (3) ◽  
pp. 745-752 ◽  
Author(s):  
M Van de Wetering ◽  
J Castrop ◽  
V Korinek ◽  
H Clevers

Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer.


1992 ◽  
Vol 176 (4) ◽  
pp. 1091-1098 ◽  
Author(s):  
R A Seder ◽  
W E Paul ◽  
M M Davis ◽  
B Fazekas de St Groth

To study the factors that determine whether CD4+ T cells produce interleukin 4 (IL-4) or interferon gamma (IFN-gamma) upon stimulation we used a system allowing naive T cells to be primed in vitro by specific antigen. Dense CD4+ T cells were purified from mice that expressed transgenes encoding a T cell receptor specific for pigeon cytochrome C peptide 88-104 in association with I-Ek. These T cells produced very limited amounts of IL-4 and IFN-gamma upon immediate challenge with 88-104 and antigen-presenting cells (APC). However, after an initial "priming" culture in which they were incubated for 4 d in the presence of 88-104, APC, and 1,000 U/ml IL-4, the T cells acquired the capacity to produce substantial amounts of IL-4 upon rechallenge but made very little IFN-gamma. Cells primed in the absence of IL-4 produced IFN-gamma upon rechallenge but virtually no IL-4. The inhibitory effect of IL-4 on IFN-gamma production did not appear to be mediated by the induction of IL-10 production since IL-10 addition to initial cultures did not suppress priming for IFN-gamma production, nor did anti-IL-10 block the inhibitory effect of IL-4. IFN-gamma itself did not increase priming for IFN-gamma production, nor did anti-IFN-gamma reduce such priming. IFN-gamma did, however, diminish priming for IL-4 production when limiting amounts of IL-4 (100 U/ml) were used in the initial culture. The dominant effect of IL-4 in determining the lymphokine-producing phenotype of primed cells was observed with dendritic cells (DC), activated B cells, and I-Ek-transfected fibroblasts as APC. However, the different APC did vary in their potency, with DC being superior to activated B cells, which were superior to transfected fibroblasts.


Blood ◽  
2021 ◽  
Author(s):  
Wei Jia ◽  
Jonathan C. Poe ◽  
Hsuan Su ◽  
Sarah Anand ◽  
Glenn K. Matsushima ◽  
...  

Chronic graft versus host disease (cGVHD) patients have increased B cell-activating factor (BAFF) levels, but whether BAFF promotes disease after allogeneic bone marrow transplantation (allo-BMT) remains unknown. In a major MHC-mismatched model with cGVHD-like manifestations we first examined B-lymphopenic mMT allo-BMT recipients and found that increased BAFF levels in cGVHD mice were not merely a reflection of B cell number. Mice that later developed cGVHD, had significantly increased numbers of recipient fibroblastic reticular cells (FRCs) with higher BAFF transcript levels. Increased BAFF production by donor cells also likely contributed to cGVHD since BAFF transcript in CD4+ T cells from diseased mice and patients was increased. Chronic GVHD manifestations in mice associated with high BAFF/B cell ratios and persistence of B Cell Receptor (BCR)-activated B cells in peripheral blood and lesional tissue. By employing BAFF transgenic (Tg) mice donor cells, we addressed whether high BAFF contributed to BCR activation in cGVHD. BAFF increased NOTCH2 expression on B cells, augmenting BCR-responsiveness to surrogate antigen and NOTCH ligand. BAFF-Tg B cells had significantly increased protein levels of the proximal BCR signaling molecule SYK, and high SYK protein was maintained by BAFF after in vitro BCR-activation or when alloantigen was present in vivo. Using T-cell depleted (BM only) BAFF-Tg donors, we found that BAFF promoted cGVHD manifestations, circulating GL7+ B cells and alloantibody production. We demonstrate that pathological production of BAFF promotes an altered B-cell compartment and augments BCR-responsiveness. Our findings compel studies of therapeutic targeting of BAFF and BCR pathways in cGVHD patients.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4507-4507 ◽  
Author(s):  
L. Laura Sun ◽  
Xiaocheng Chen ◽  
Yvonne Chen ◽  
Mark S. Dennis ◽  
Diego Ellerman ◽  
...  

Abstract T-cell recruiting bispecific antibodies and antibody fragments have been used to harness the cytotoxic potential of T cells for cancer treatment. As an example, encouraging clinical responses have been reported with the B cell targeting Blinatumomab, a 55-kDa fusion protein composed of two single-chain antibody fragments (scFvs). However, the therapeutic promise of many reported bispecific antibodies and fragments is often limited by unfavorable pharmacokinetics and administration schedule, immunogenicity, and a propensity towards aggregation. We have adopted a knobs-into-holes (KIH) antibody format and produced T-cell dependent bispecific antibodies (TDB), which allow one arm to target various B cell antigens while the other arm recruits T cells by binding to the CD3e subunit of the T-cell receptor. These B cell targeting TDBs are full length, humanized IgG1 antibodies with natural antibody architecture. Single dose pharmacokinetic/pharmacodynamic studies in cynomolgus monkeys show the KIH format TDBs are well tolerated in life, result in potent B cell depletion in peripheral and lymphoid tissue, and demonstrate pharmacokinetic properties resembling conventional antibody therapy. One B cell antigen targeted is CD79b, a component of the B cell receptor complex. CD79b is restricted to B cells, is highly prevalent on B cell leukemia and lymphomas, and has been clinically validated by an anti-CD79b antibody-drug conjugate as a safe and effective therapeutic target for B cell malignancies (ASCO 2014 abstract#8519). In our present work, we show that anti-CD79b/CD3 TDB can be produced and purified from E.coli, free of homodimer and aggregates. Anti-CD79b/CD3 TDB is a conditional agonist, activating CD3+T cells only in the presence of CD79b expressing B cells. In vitro, it induces potent B cell killing in a T-cell dependent manner, and is broadly active against lymphoma cell lines with a wide range of CD79b antigen levels. Compared to bispecific antibodies targeting some other B cell antigens, anti-CD79b/CD3 TDB appears to be more potent in autologous B cell killing assays with human PBMCs isolated from healthy donors. Taking advantage of antibodies with a range of binding affinities, we show that the B cell cytotoxic potency of anti-CD79b/CD3 TDB can be enhanced with increased binding affinity of either the anti-CD79b arm or the anti-CD3 arm in vitro. To assess the therapeutic potential of anti-CD79b/CD3 TDB, we further demonstrate that it is active in killing B lymphoma cells isolated from leukemia and lymphoma patients. Collectively, these preclinical data suggest anti-CD79b/CD3 TDB may be a promising agent for clinical development in B cell malignancies. Disclosures Sun: Genentech: Employment. Chen:Genentech: Employment. Chen:Genentech: Employment. Dennis:Genentech: Employment. Ellerman:Genentech: Employment. Johnson:Genentech: Employment. Mathieu:Genentech: Employment. Oldendorp:Genentech: Employment. Polson:Genentech: Employment. Reyes:Genentech: Employment. Stefanich:Genentech: Employment. Wang:Genentech: Employment. Wang:Genentech: Employment. Zheng:Genentech: Employment. Ebens:Genentech: Employment.


1998 ◽  
Vol 188 (11) ◽  
pp. 1977-1983 ◽  
Author(s):  
Sally R.M. Bennett ◽  
Francis R. Carbone ◽  
Tracey Toy ◽  
Jacques F.A.P. Miller ◽  
William R. Heath

This report investigates the response of CD8+ T cells to antigens presented by B cells. When C57BL/6 mice were injected with syngeneic B cells coated with the Kb-restricted ovalbumin (OVA) determinant OVA257–264, OVA-specific cytotoxic T lymphocyte (CTL) tolerance was observed. To investigate the mechanism of tolerance induction, in vitro–activated CD8+ T cells from the Kb-restricted, OVA-specific T cell receptor transgenic line OT-I (OT-I cells) were cultured for 15 h with antigen-bearing B cells, and their survival was determined. Antigen recognition led to the killing of the B cells and, surprisingly, to the death of a large proportion of the OT-I CTLs. T cell death involved Fas (CD95), since OT-I cells deficient in CD95 molecules showed preferential survival after recognition of antigen on B cells. To investigate the tolerance mechanism in vivo, naive OT-I T cells were adoptively transferred into normal mice, and these mice were coinjected with antigen-bearing B cells. In this case, OT-I cells proliferated transiently and were then lost from the secondary lymphoid compartment. These data provide the first demonstration that B cells can directly tolerize CD8+ T cells, and suggest that this occurs via CD95-mediated, activation-induced deletion.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel Michaud ◽  
Bhalchandra Mirlekar ◽  
Colleen Steward ◽  
Gail Bishop ◽  
Yuliya Pylayeva-Gupta

B cells can act as potent suppressors of anti-tumor T cell immunity, presenting a mechanism of resistance to immunotherapy. In pancreatic ductal adenocarcinoma, B cells can display a T cell-suppressive or regulatory phenotype centered on the expression of the cytokine Interleukin 35 (IL-35). While B cell-mediated immunosuppression presents a barrier to anti-tumorigenic T cell function, it is not clear how regulatory B cell function could be targeted, and the signals that promote this suppressive phenotype in B cells are not well understood. Here we use a novel IL-35 reporter model to understand which signaling pathways are important for immunosuppressive properties in B cells. In vitro analysis of IL-35 reporter B cells revealed a synergy between the BCR and TLR4 signaling pathways is sufficient to induce IL-35 expression. However, in vivo, B cell receptor activation, as opposed to MyD88 signaling in B cells, is central to B cell-mediated suppression and promotion of pancreatic cancer growth. Further analysis identified protein kinase D2 (PKD2) as being a key downstream regulator of IL-35 expression in B cells. Regulatory B cells with an inactivating mutation in PKD2 failed to produce IL-35 or fully suppress effector T cell function in vitro. Furthermore, inhibition of PKD in B cells decreased tumor growth and promoted effector T cell function upon adoptive transfer into B cell-deficient mice. Collectively, these data provide insight into how regulatory B cell function is promoted in pancreatic cancer and identify potential therapeutic targets to restrain this function.


2018 ◽  
Vol 92 (13) ◽  
pp. e02225-17 ◽  
Author(s):  
Simin D. Rezaei ◽  
Hao K. Lu ◽  
J. Judy Chang ◽  
Ajantha Rhodes ◽  
Sharon R. Lewin ◽  
...  

ABSTRACTHIV infection requires lifelong antiretroviral therapy because of the persistence of latently infected CD4+T cells. The induction of virus expression from latently infected cells occurs following T cell receptor (TCR) activation, but not all latently infected cells respond to TCR stimulation. We compared two models of latently infected cells using an enhanced green fluorescent protein (EGFP) reporter virus to infect CCL19-treated resting CD4+(rCD4+) T cells (preactivation latency) or activated CD4+T cells that returned to a resting state (postactivation latency). We isolated latently infected cells by sorting for EGFP-negative (EGFP−) cells after infection. These cells were cultured with antivirals and stimulated with anti-CD3/anti-CD28, mitogens, and latency-reversing agents (LRAs) and cocultured with monocytes and anti-CD3. Spontaneous EGFP expression was more frequent in postactivation than in preactivation latency. Stimulation of latently infected cells with monocytes/anti-CD3 resulted in an increase in EGFP expression compared to that for unstimulated controls using the preactivation latency model but led to a reduction in EGFP expression in the postactivation latency model. The reduced EGFP expression was not associated with reductions in the levels of viral DNA or T cell proliferation but depended on direct contact between monocytes and T cells. Monocytes added to the postactivation latency model during the establishment of latency reduced spontaneous virus expression, suggesting that monocyte-T cell interactions at an early time point postinfection can maintain HIV latency. This direct comparison of pre- and postactivation latency suggests that effective strategies needed to reverse latency will depend on how latency is established.IMPORTANCEOne strategy being evaluated to eliminate latently infected cells that persist in HIV-infected individuals on antiretroviral therapy (ART) is to activate HIV expression or production with the goal of inducing virus-mediated cytolysis or immune-mediated clearance of infected cells. The gold standard for the activation of latent virus is T cell receptor stimulation with anti-CD3/anti-CD28. However, this stimulus activates only a small proportion of latently infected cells. We show clear differences in the responses of latently infected cells to activating stimuli based on how latent infection is established, an observation that may potentially explain the persistence of noninduced intact proviruses in HIV-infected individuals on ART.


2011 ◽  
Vol 208 (10) ◽  
pp. 2033-2042 ◽  
Author(s):  
Shirly Becker-Herman ◽  
Almut Meyer-Bahlburg ◽  
Marc A. Schwartz ◽  
Shaun W. Jackson ◽  
Kelly L. Hudkins ◽  
...  

Patients with the immunodeficiency Wiskott-Aldrich syndrome (WAS) frequently develop systemic autoimmunity. Here, we demonstrate that mutation of the WAS gene results in B cells that are hyperresponsive to B cell receptor and Toll-like receptor (TLR) signals in vitro, thereby promoting a B cell–intrinsic break in tolerance. Whereas this defect leads to autoantibody production in WAS protein–deficient (WASp−/−) mice without overt disease, chimeric mice in which only the B cell lineage lacks WASp exhibit severe autoimmunity characterized by spontaneous germinal center formation, class-switched autoantibodies, renal histopathology, and early mortality. Both T cell help and B cell–intrinsic TLR engagement play important roles in promoting disease in this model, as depletion with anti-CD4 antibodies or generation of chimeric mice with B cells deficient in both WASp and MyD88 prevented development of autoimmune disease. These data highlight the potentially harmful role for cell-intrinsic loss of B cell tolerance in the setting of normal T cell function, and may explain why WAS patients with mixed chimerism after stem cell transplantation often develop severe humoral autoimmunity.


1996 ◽  
Vol 183 (1) ◽  
pp. 203-213 ◽  
Author(s):  
F Granucci ◽  
M Rescigno ◽  
G Marconi ◽  
M Foti ◽  
P Ricciardi-Castagnoli

The mechanisms that induce T cell tolerance to circulating self-proteins are still controversial, and both the deletion and selection of autoreactive T cells have been observed in the thymus of transgenic mouse models. To address the question of the induction of tolerance to circulating self-constituents, a T cell receptor-transgenic mouse specific for the serum protein immunoglobulin (Ig) gamma and (IgG2ab) was generated. The choice of an allotype-specific T cell also allowed the generation of transgenic control mice not expressing the self-antigen. It was found that the transgenic T cells were not deleted in the thymus, did not become tolerant in the periphery, and regulated the function of gamma 2ab-positive B cells as shown by the lack of IgG2ab protein in the serum of the transgenic mice. In spite of this activity in vivo, the transgenic T cells did not proliferate in vitro in response to the allotype-specific peptide. Interestingly, antigen-specific T cell proliferation could be restored if the transgenic mice were previously challenged to induce IgG2ab responses. After this challenge, IgG2ab protein in the serum of the transgenic mice could be partially restored, although still remaining much lower than in control mice. In addition, there was a dramatic increase in serum IgE levels, suggesting that newly generated gamma 2ab-secreting B cells can be induced to switch to IgE in the presence of allotype-specific T cells. These results indicate that Ig-specific T cells may represent a late-acting form of T cell help for the regulation of the IgG2a-to-IgE class switch.


Sign in / Sign up

Export Citation Format

Share Document