scholarly journals Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties.

1996 ◽  
Vol 16 (3) ◽  
pp. 745-752 ◽  
Author(s):  
M Van de Wetering ◽  
J Castrop ◽  
V Korinek ◽  
H Clevers

Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer.

1992 ◽  
Vol 12 (2) ◽  
pp. 747-757
Author(s):  
K Georgopoulos ◽  
B A Morgan ◽  
D D Moore

Expression of the CD3 delta gene of the T-cell receptor (TCR) complex is regulated by a T-cell-specific enhancer. A highly conserved 40-bp motif (element delta A) within the CD3 delta enhancer is responsible for mediating its activity and specificity. Element delta A exhibits sequence similarities to the cyclic AMP response element (CRE) but does not respond to changes in the level of cyclic AMP. Using the delta A element as a probe, we have isolated three cDNA clones encoding three distinct protein isoforms, products of differential splicing and alternate promoter usage of the CRE-BP gene. These isoforms share the DNA binding and dimerization domains at the C terminus of the protein but differ at their N termini. In transfection assays, their activities as transcription regulators differ: CRE-BP2 is a potent activator, CRE-BP3 is a weak activator, and CRE-BP1 is transcriptionally inert. Mutations in the basic region of the CRE-BP1 protein which abrogate its ability to bind DNA render this protein a dominant repressor of the delta A enhancer. Antibodies to the CRE-BP protein interact specifically with the ubiquitous and predominantly T-cell-restricted nuclear complexes that bind to the delta A element and suggest the presence of this protein in homo- and heterodimeric complexes. Since the delta A motif is also present in the enhancer and promoter of the TCR alpha and beta genes, the CRE-BP isoforms may mediate expression of other members of the CD3/TCR complex during T-cell development.


2003 ◽  
Vol 77 (17) ◽  
pp. 9700-9709 ◽  
Author(s):  
Alastair I. Macrae ◽  
Edward J. Usherwood ◽  
S. Mazher Husain ◽  
Emilio Flaño ◽  
In-Jeong Kim ◽  
...  

ABSTRACT This work describes analyses of the function of the murid herpesvirus 4 strain 68 (MHV-68) M2 gene. A frameshift mutation was made in the M2 open reading frame that caused premature termination of translation of M2 after amino acid residue 90. The M2 mutant showed no defect in productive replication in vitro or in lungs after infection of mice. Likewise, the characteristic transient increase in spleen cell number, Vβ4 T-cell-receptor-positive CD8+ T-cell mononucleosis, and establishment of latency were unaffected. However, the M2 mutant virus was defective in its ability to cause the transient sharp rise in latently infected cells normally seen in the spleen after infection of mice. We also demonstrate that expression of M2 is restricted to B cells in the spleen and that M2 encodes a 30-kDa protein localizing predominantly in the cytoplasm and plasma membrane of B cells.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5390
Author(s):  
Dyantha I. van der Lee ◽  
Georgia Koutsoumpli ◽  
Rogier M. Reijmers ◽  
Willy Honders ◽  
Rob C. M. de Jong ◽  
...  

Acute myeloid leukemia (AML) is a hematological malignancy caused by clonal expansion of myeloid progenitor cells. Most patients with AML respond to chemotherapy, but relapses often occur and infer a very poor prognosis. Thirty to thirty-five percent of AMLs carry a four base pair insertion in the nucleophosmin 1 gene (NPM1) with a C-terminal alternative reading frame of 11 amino acids. We previously identified various neopeptides from the alternative reading frame of mutant NPM1 (dNPM1) on primary AML and isolated an HLA-A*02:01-restricted T-cell receptor (TCR) that enables human T-cells to kill AML cells upon retroviral gene transfer. Here, we isolated T-cells recognizing the dNPM1 peptide AVEEVSLRK presented in HLA-A*11:01. The TCR cloned from a T-cell clone recognizing HLA-A*11:01+ primary AML cells conferred in vitro recognition and lysis of AML upon transfer to CD8 cells, but failed to induce an anti-tumor effect in immunodeficient NSG mice engrafted with dNPM1 OCI-AML3 cells. In conclusion, our data show that AVEEVSLRK is a dNPM1 neoantigen on HLA-A*11:01+ primary AMLs. CD8 cells transduced with an HLA-A*11:01-restricted TCR for dNPM1 were reactive against AML in vitro. The absence of reactivity in a preclinical mouse model requires further preclinical testing to predict the potential efficacy of this TCR in clinical development.


1992 ◽  
Vol 12 (2) ◽  
pp. 747-757 ◽  
Author(s):  
K Georgopoulos ◽  
B A Morgan ◽  
D D Moore

Expression of the CD3 delta gene of the T-cell receptor (TCR) complex is regulated by a T-cell-specific enhancer. A highly conserved 40-bp motif (element delta A) within the CD3 delta enhancer is responsible for mediating its activity and specificity. Element delta A exhibits sequence similarities to the cyclic AMP response element (CRE) but does not respond to changes in the level of cyclic AMP. Using the delta A element as a probe, we have isolated three cDNA clones encoding three distinct protein isoforms, products of differential splicing and alternate promoter usage of the CRE-BP gene. These isoforms share the DNA binding and dimerization domains at the C terminus of the protein but differ at their N termini. In transfection assays, their activities as transcription regulators differ: CRE-BP2 is a potent activator, CRE-BP3 is a weak activator, and CRE-BP1 is transcriptionally inert. Mutations in the basic region of the CRE-BP1 protein which abrogate its ability to bind DNA render this protein a dominant repressor of the delta A enhancer. Antibodies to the CRE-BP protein interact specifically with the ubiquitous and predominantly T-cell-restricted nuclear complexes that bind to the delta A element and suggest the presence of this protein in homo- and heterodimeric complexes. Since the delta A motif is also present in the enhancer and promoter of the TCR alpha and beta genes, the CRE-BP isoforms may mediate expression of other members of the CD3/TCR complex during T-cell development.


2001 ◽  
Vol 193 (11) ◽  
pp. 1295-1302 ◽  
Author(s):  
Megan K. Levings ◽  
Romina Sangregorio ◽  
Maria-Grazia Roncarolo

Active suppression by T regulatory (Tr) cells plays an important role in the downregulation of T cell responses to foreign and self-antigens. Mouse CD4+ Tr cells that express CD25 possess remarkable suppressive activity in vitro and in autoimmune disease models in vivo. Thus far, the existence of a similar subset of CD25+CD4+ Tr cells in humans has not been reported. Here we show that human CD25+CD4+ Tr cells isolated from peripheral blood failed to proliferate and displayed reduced expression of CD40 ligand (CD40L), in response to T cell receptor–mediated polyclonal activation, but strongly upregulated cytotoxic T lymphocyte–associated antigen (CTLA)-4. Human CD25+CD4+ Tr cells also did not proliferate in response to allogeneic antigen-presenting cells, but they produced interleukin (IL)-10, transforming growth factor (TGF)-β, low levels of interferon (IFN)-γ, and no IL-4 or IL-2. Importantly, CD25+CD4+ Tr cells strongly inhibited the proliferative responses of both naive and memory CD4+ T cells to alloantigens, but neither IL-10, TGF-β, nor CTLA-4 seemed to be directly required for their suppressive effects. CD25+CD4+ Tr cells could be expanded in vitro in the presence of IL-2 and allogeneic feeder cells and maintained their suppressive capacities. These findings that CD25+CD4+ Tr cells with immunosuppressive effects can be isolated from peripheral blood and expanded in vitro without loss of function represent a major advance towards the therapeutic use of these cells in T cell–mediated diseases.


1993 ◽  
Vol 178 (6) ◽  
pp. 2107-2113 ◽  
Author(s):  
A J da Silva ◽  
O Janssen ◽  
C E Rudd

Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR-zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v-src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.


2002 ◽  
Vol 196 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Mark Lee ◽  
Erik Ranheim ◽  
Cheng Chi Chao ◽  
Maija Sanna ◽  
...  

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.


Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2000 ◽  
Vol 74 (9) ◽  
pp. 3948-3952 ◽  
Author(s):  
Christelle Retière ◽  
Virginie Prod'homme ◽  
Berthe-Marie Imbert-Marcille ◽  
Marc Bonneville ◽  
Henri Vié ◽  
...  

ABSTRACT Cytotoxic T lymphocytes (CTLs) play a central role in the control of persistent human cytomegalovirus (HCMV) infection in healthy virus carriers. Previous analyses of the specificity of HCMV-reactive CD8+ CTLs drawn from in vitro models in which antigen-presenting cells were autologous fibroblasts infected with laboratory HCMV strains have shown focusing of CTL responses against the major tegument protein, pp65. By contrast, the 72-kDa major immediate-early protein (IE1) was identified as a minor target for this response. Here we have studied the fine specificity and T-cell-receptor features of T-cell clones generated against autologous B lymphoblastoid cell lines stably transfected with HCMV cDNA coding for either pp65 or a natural variant of IE1. This strategy allowed efficient generation of T-cell clones against IE1 and pp65 and led to the identification of several new IE1 and pp65 epitopes, including some located in polymorphic regions of IE1. Such an approach may provide relevant information about the characteristics of the CTL response to IE1 and the effect of viral polymorphism on the immune response against HCMV.


Sign in / Sign up

Export Citation Format

Share Document