scholarly journals Enhancer-Like Activity of a Brome Mosaic Virus RNA Promoter

2003 ◽  
Vol 77 (3) ◽  
pp. 1830-1839 ◽  
Author(s):  
C. T. Ranjith-Kumar ◽  
Xin Zhang ◽  
C. Cheng Kao

ABSTRACT As with transcription from DNA templates, RNA synthesis from viral RNA templates must initiate accurately. RNA sequences named specificity and initiation determinants allow recognition of and coordinated interaction with the viral replication enzyme. Using enriched replicase from brome mosaic virus (BMV)-infected plants and variants of the promoter template for minus-strand and subgenomic RNA initiation, we found that a specificity determinant for minus-strand initiation could function at variable distances and positions from the 3′ initiation site in a manner similar to enhancers of transcription from DNA templates. This determinant's addition could convert a cellular tRNA into a template for RNA synthesis by the BMV replicase in vitro. Furthermore, the same specificity element could direct internal initiation, which occurred at a highly preferred site in a manner distinct from initiation at the 3′ terminus of the template. These results document two distinct modes of initiation site recognition by a viral RNA replicase.

2003 ◽  
Vol 77 (10) ◽  
pp. 5703-5711 ◽  
Author(s):  
K. Sivakumaran ◽  
M. Hema ◽  
C. Cheng Kao

ABSTRACT The RNA replicase extracted from Brome mosaic virus (BMV)-infected plants has been used to characterize the cis-acting elements for RNA synthesis and the mechanism of RNA synthesis. Minus-strand RNA synthesis in vitro requires a structure named stem-loop C (SLC) that contains a clamped adenine motif. In vitro, there are several specific requirements for SLC recognition. We examined whether these requirements also apply to BMV replication in barley protoplasts. BMV RNA3s with mutations in SLC were transfected into barley protoplasts, and the requirements for minus- and plus-strand replication were found to correlate well with the requirements in vitro. Furthermore, previous analysis of replicase recognition of the Cucumber mosaic virus (CMV) and BMV SLCs indicates that the requirements in the BMV SLC are highly specific. In protoplasts, we found that BMV RNA3s with their SLCs replaced with two different CMV SLCs were defective for replication. In vitro results generated with the BMV replicase and minimal-length RNAs generally agreed with those of in vivo BMV RNA replication. To extend this conclusion, we determined that, corresponding with the process of infection, the BMV replicases extracted from plants at different times after infection have different levels of recognition of the minimal promoters for plus- and minus-strand RNA syntheses.


1999 ◽  
Vol 73 (8) ◽  
pp. 6415-6423 ◽  
Author(s):  
K. Sivakumaran ◽  
C. Cheng Kao

ABSTRACT In contrast to the synthesis of minus-strand genomic and plus-strand subgenomic RNAs, the requirements for brome mosaic virus (BMV) genomic plus-strand RNA synthesis in vitro have not been previously reported. Therefore, little is known about the biochemical requirements for directing genomic plus-strand synthesis. Using DNA templates to characterize the requirements for RNA-dependent RNA polymerase template recognition, we found that initiation from the 3′ end of a template requires one nucleotide 3′ of the initiation nucleotide. The addition of a nontemplated nucleotide at the 3′ end of minus-strand BMV RNAs led to initiation of genomic plus-strand RNA in vitro. Genomic plus-strand initiation was specific since cucumber mosaic virus minus-strand RNA templates were unable to direct efficient synthesis under the same conditions. In addition, mutational analysis of the minus-strand template revealed that the −1 nontemplated nucleotide, along with the +1 cytidylate and +2 adenylate, is important for RNA-dependent RNA polymerase interaction. Furthermore, genomic plus-strand RNA synthesis is affected by sequences 5′ of the initiation site.


Virology ◽  
1987 ◽  
Vol 158 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Mamoru Horikoshi ◽  
Masaharu Nakayama ◽  
Naoto Yamaoka ◽  
Iwao Furusawa ◽  
Jiko Shishiyama

2000 ◽  
Vol 74 (22) ◽  
pp. 10323-10331 ◽  
Author(s):  
K. Sivakumaran ◽  
Y. Bao ◽  
M. J. Roossinck ◽  
C. C. Kao

ABSTRACT Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of theBromovirus and Cucumovirus genera have a tRNA-like structure at the 3′ end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. InBrome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5′CA3′ dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.


2005 ◽  
Vol 79 (14) ◽  
pp. 9046-9053 ◽  
Author(s):  
Jen-Wen Lin ◽  
Hsiao-Ning Chiu ◽  
I-Hsuan Chen ◽  
Tzu-Chi Chen ◽  
Yau-Heiu Hsu ◽  
...  

ABSTRACT Bamboo mosaic virus (BaMV) has a single-stranded positive-sense RNA genome. The secondary structure of the 3′-terminal sequence of the minus-strand RNA has been predicted by MFOLD and confirmed by enzymatic structural probing to consist of a large, stable stem-loop and a small, unstable stem-loop. To identify the promoter for plus-strand RNA synthesis in this region, transcripts of 39, 77, and 173 nucleotides (Ba-39, Ba-77, and Ba-173, respectively) derived from the 3′ terminus of the minus-strand RNA were examined by an in vitro RNA-dependent RNA polymerase assay for the ability to direct RNA synthesis. Ba-77 and Ba-39 appeared to direct the RNA synthesis efficiently, while Ba-173 failed. Ba-77/Δ5, with a deletion of the 3′-terminal UUUUC sequence in Ba-77, directed the RNA synthesis only to 7% that of Ba-77. However, Ba-77/Δ16 and Ba-77/Δ31, with longer deletions but preserving the terminal UUUUC sequence of Ba-77, restored the template activity to about 60% that of the wild type. Moreover, mutations that changed the sequence in the stem of the large stem-loop interfered with the efficiency of RNA synthesis and RNA accumulation in vivo. The mutant with an internal deletion in the region between the terminal UUUUC sequence and the large stem-loop reduced the viral RNA accumulation in protoplasts, but mutants with insertions did not. Taken together, these results suggest that three cis-acting elements in the 3′ end of the minus-strand RNA, namely, the terminal UUUUC sequence, the sequence in the large stem-loop, and the distance between these two regions, are involved in modulating the efficiency of BaMV plus-strand viral RNA synthesis.


2004 ◽  
Vol 78 (3) ◽  
pp. 1169-1180 ◽  
Author(s):  
M. Hema ◽  
C. Cheng Kao

ABSTRACT Bromoviral templates for plus-strand RNA synthesis are rich in A or U nucleotides in comparison to templates for minus-strand RNA synthesis. Previous studies demonstrated that plus-strand RNA synthesis by the brome mosaic virus (BMV) RNA replicase is more efficient if the template contains an A/U-rich template sequence near the initiation site (K. Sivakumaran and C. C. Kao, J. Virol. 73:6415-6423, 1999). These observations led us to examine the effects of nucleotide changes near the template's initiation site on the accumulation of BMV RNA3 genomic minus-strand, genomic plus-strand, and subgenomic RNAs in barley protoplasts transfected with wild-type and mutant BMV transcripts. Mutations in the template for minus-strand synthesis had only modest effects on BMV replication in barley protoplasts. Mutants with changes to the +3, +5, and +7 template nucleotides accumulated minus-strand RNA at levels similar to the the wild-type level. However, mutations at positions adjacent to the initiation cytidylate in the templates for genomic and subgenomic plus-strand RNA synthesis significantly decreased RNA accumulation. For example, changes at the third template nucleotide for plus-strand RNA3 synthesis resulted in RNA accumulation at between 18 and 24% of the wild-type level, and mutations in the third template nucleotide for subgenomic RNA4 resulted in accumulations at between 7 and 14% of the wild-type level. The effects of the mutations generally decreased as the mutations occurred further from the initiation nucleotide. These findings demonstrate that there are different requirements of the template sequence near the initiation nucleotide for BMV RNA accumulation in plant cells.


2006 ◽  
Vol 80 (21) ◽  
pp. 10743-10751 ◽  
Author(s):  
Toba A. M. Osman ◽  
Robert H. A. Coutts ◽  
Kenneth W. Buck

ABSTRACT Cereal yellow dwarf virus (CYDV) RNA has a 5′-terminal genome-linked protein (VPg). We have expressed the VPg region of the CYDV genome in bacteria and used the purified protein (bVPg) to raise an antiserum which was able to detect free VPg in extracts of CYDV-infected oat plants. A template-dependent RNA-dependent RNA polymerase (RdRp) has been produced from a CYDV membrane-bound RNA polymerase by treatment with BAL 31 nuclease. The RdRp was template specific, being able to utilize templates from CYDV plus- and minus-strand RNAs but not those of three unrelated viruses, Red clover necrotic mosaic virus, Cucumber mosaic virus, and Tobacco mosaic virus. RNA synthesis catalyzed by the RdRp required a 3′-terminal GU sequence and the presence of bVPg. Additionally, synthesis of minus-strand RNA on a plus-strand RNA template required the presence of a putative stem-loop structure near the 3′ terminus of CYDV RNA. The base-paired stem, a single-nucleotide (A) bulge in the stem, and the sequence of a tetraloop were all required for the template activity. Evidence was produced showing that minus-strand synthesis in vitro was initiated by priming by bVPg at the 3′ end of the template. The data are consistent with a model in which the RdRp binds to the stem-loop structure which positions the active site to recognize the 3′-terminal GU sequence for initiation of RNA synthesis by the addition of an A residue to VPg.


2004 ◽  
Vol 78 (24) ◽  
pp. 13420-13429 ◽  
Author(s):  
S.-K. Choi ◽  
M. Hema ◽  
K. Gopinath ◽  
J. Santos ◽  
C. Kao

ABSTRACT The cis-acting elements for Brome mosaic virus (BMV) RNA synthesis have been characterized primarily for RNA3. To identify additional replicase-binding elements, nested fragments of all three of the BMV RNAs, both plus- and minus-sense fragments, were constructed and tested for binding enriched BMV replicase in a template competition assay. Ten RNA fragments containing replicase-binding sites were identified; eight were characterized further because they were more effective competitors. All eight mapped to noncoding regions of BMV RNAs, and the positions of seven localized to sequences containing previously characterized core promoter elements (C. C. Kao, Mol. Plant Pathol. 3:55-62, 2001), thus suggesting the identities of the replicase-binding sites. Three contained the tRNA-like structures that direct minus-strand RNA synthesis, three were within the 3′ region of each minus-strand RNA that contained the core promoter for genomic plus-strand initiation, and one was in the core subgenomic promoter. Single-nucleotide mutations known previously to abolish RNA synthesis in vitro prevented replicase binding. When tested in the context of the respective full-length RNAs, the same mutations abolished BMV RNA synthesis in transfected barley protoplasts. The eighth site was within the intercistronic region (ICR) of plus-strand RNA3. Further mapping showed that a sequence of 22 consecutive adenylates was responsible for binding the replicase, with 16 being the minimal required length. Deletion of the poly(A) sequence was previously shown to severely debilitate BMV RNA replication in plants (E. Smirnyagina, Y. H. Hsu, N. Chua, and P. Ahlquist, Virology 198:427-436, 1994). Interestingly, the B box motif in the ICR of RNA3, which has previously been determined to bind the 1a protein, does not bind the replicase. These results identify the replicase-binding sites in all of the BMV RNAs and suggest that the recognition of RNA3 is different from that of RNA1 and RNA2.


Sign in / Sign up

Export Citation Format

Share Document