scholarly journals Amino Acid Changes within Conserved Region III of the Herpes Simplex Virus and Human Cytomegalovirus DNA Polymerases Confer Resistance to 4-Oxo-Dihydroquinolines, a Novel Class of Herpesvirus Antiviral Agents

2003 ◽  
Vol 77 (3) ◽  
pp. 1868-1876 ◽  
Author(s):  
Darrell R. Thomsen ◽  
Nancee L. Oien ◽  
Todd A. Hopkins ◽  
Mary L. Knechtel ◽  
Roger J. Brideau ◽  
...  

ABSTRACT The 4-oxo-dihydroquinolines (PNU-182171 and PNU-183792) are nonnucleoside inhibitors of herpesvirus polymerases (R. J. Brideau et al., Antiviral Res. 54:19-28, 2002; N. L. Oien et al., Antimicrob. Agents Chemother. 46:724-730, 2002). In cell culture these compounds inhibit herpes simplex virus type 1 (HSV-1), HSV-2, human cytomegalovirus (HCMV), varicella-zoster virus (VZV), and human herpesvirus 8 (HHV-8) replication. HSV-1 and HSV-2 mutants resistant to these drugs were isolated and the resistance mutation was mapped to the DNA polymerase gene. Drug resistance correlated with a point mutation in conserved domain III that resulted in a V823A change in the HSV-1 or the equivalent amino acid in the HSV-2 DNA polymerase. Resistance of HCMV was also found to correlate with amino acid changes in conserved domain III (V823A+V824L). V823 is conserved in the DNA polymerases of six (HSV-1, HSV-2, HCMV, VZV, Epstein-Barr virus, and HHV-8) of the eight human herpesviruses; the HHV-6 and HHV-7 polymerases contain an alanine at this amino acid. In vitro polymerase assays demonstrated that HSV-1, HSV-2, HCMV, VZV, and HHV-8 polymerases were inhibited by PNU-183792, whereas the HHV-6 polymerase was not. Changing this amino acid from valine to alanine in the HSV-1, HCMV, and HHV-8 polymerases alters the polymerase activity so that it is less sensitive to drug inhibition. In contrast, changing the equivalent amino acid in the HHV-6 polymerase from alanine to valine alters polymerase activity so that PNU-183792 inhibits this enzyme. The HSV-1, HSV-2, and HCMV drug-resistant mutants were not altered in their susceptibilities to nucleoside analogs; in fact, some of the mutants were hypersensitive to several of the drugs. These results support a mechanism where PNU-183792 inhibits herpesviruses by interacting with a binding determinant on the viral DNA polymerase that is less important for the binding of nucleoside analogs and deoxynucleoside triphosphates.

2017 ◽  
Vol 92 (5) ◽  
Author(s):  
Jessica L. Lawler ◽  
Purba Mukherjee ◽  
Donald M. Coen

ABSTRACTThe catalytic subunit (Pol) of herpes simplex virus 1 (HSV-1) DNA polymerase has been extensively studied both as a model for other family B DNA polymerases and for its differences from these enzymes as an antiviral target. Among the activities of HSV-1 Pol is an intrinsic RNase H activity that cleaves RNA from RNA-DNA hybrids. There has long been a controversy regarding whether this activity is due to the 3′-to-5′ exonuclease of Pol or whether it is a separate activity, possibly acting on 5′ RNA termini. To investigate this issue, we compared wild-type HSV-1 Pol and a 3′-to-5′ exonuclease-deficient mutant, D368A Pol, for DNA polymerase activity, 3′-to-5′ exonuclease activity, and RNase H activityin vitro. Additionally, we assessed the RNase H activity using differentially end-labeled templates with 5′ or 3′ RNA termini. The mutant enzyme was at most modestly impaired for DNA polymerase activity but was drastically impaired for 3′-to-5′ exonuclease activity, with no activity detected even at high enzyme-to-DNA substrate ratios. Importantly, the mutant showed no detectable ability to excise RNA with either a 3′ or 5′ terminus, while the wild-type HSV-1 Pol was able to cleave RNA from the annealed RNA-DNA hairpin template, but only detectably with a 3′ RNA terminus in a 3′-to-5′ direction and at a rate lower than that of the exonuclease activity. These results suggest that HSV-1 Pol does not have an RNase H separable from its 3′-to-5′ exonuclease activity and that this activity prefers DNA degradation over degradation of RNA from RNA-DNA hybrids.IMPORTANCEHerpes simplex virus 1 (HSV-1) is a member of theHerpesviridaefamily of DNA viruses, several of which cause morbidity and mortality in humans. Although the HSV-1 DNA polymerase has been studied for decades and is a crucial target for antivirals against HSV-1 infection, several of its functions remain to be elucidated. A hypothesis suggesting the existence of a 5′-to-3′ RNase H activity intrinsic to this enzyme that could remove RNA primers from Okazaki fragments has been particularly controversial. In this study, we were unable to identify RNase H activity of HSV-1 DNA polymerase on RNA-DNA hybrids with 5′ RNA termini. We detected RNase H activity on hybrids with 3′ termini, but this was due to the 3′-to-5′ exonuclease. Thus, HSV-1 is unlikely to use this method to remove RNA primers during DNA replication but may use pathways similar to those used in eukaryotic Okazaki fragment maturation.


2015 ◽  
Vol 89 (8) ◽  
pp. 4636-4644 ◽  
Author(s):  
Jocelyne Piret ◽  
Nathalie Goyette ◽  
Brian E. Eckenroth ◽  
Emilien Drouot ◽  
Matthias Götte ◽  
...  

ABSTRACTDNA polymerases of theHerpesviridaeand bacteriophage RB69 belong to the α-like DNA polymerase family. In spite of similarities in structure and function, the RB69 enzyme is relatively resistant to foscarnet, requiring the mutation V478W in helix N to promote the closed conformation of the enzyme to make it susceptible to the antiviral. Here, we generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility and viral replicative capacity. The mutation W781V in HSV-1 induced resistance to foscarnet, acyclovir, and ganciclovir (3-, 14-, and 3-fold increases in the 50% effective concentrations [EC50s], respectively). The recombinant HCMV mutant harboring the W780V mutation was slightly resistant to foscarnet (a 1.9-fold increase in the EC50) and susceptible to ganciclovir. Recombinant HSV-1 and HCMV mutants had altered viral replication kinetics. The apparent inhibition constant values of foscarnet against mutant UL30 and UL54 DNA polymerases were 45- and 4.9-fold higher, respectively, than those against their wild-type counterparts. Structural evaluation of the tryptophan position in the UL54 DNA polymerase suggests that the bulkier phenylalanine (fingers domain) and isoleucine (N-terminal domain) could induce a tendency toward the closed conformation greater than that for UL30 and explains the modest effect of the W780V mutation on foscarnet susceptibility. Our results further suggest a role of the tryptophan in helix N in conferring HCMV and especially HSV-1 susceptibility to foscarnet and the possible contribution of other residues localized at the interface between the fingers and N-terminal domains.IMPORTANCEDNA polymerases of theHerpesviridaeand bacteriophage RB69 belong to the α-like DNA polymerase family. However, the RB69 DNA polymerase is relatively resistant to the broad-spectrum antiviral agent foscarnet. The mutation V478W in helix N of the fingers domain caused the enzyme to adopt a closed conformation and to become susceptible to the antiviral. We generated recombinant herpes simplex virus 1 (HSV-1) and human cytomegalovirus (HCMV) mutants harboring the revertant in UL30 (W781V) and UL54 (W780V) DNA polymerases, respectively, to further investigate the impact of this tryptophan on antiviral drug susceptibility. The W781V mutation in HSV-1 induced resistance to foscarnet, whereas the W780V mutation in HCMV slightly decreased drug susceptibility. This study suggests that the different profiles of susceptibility to foscarnet of the HSV-1 and HCMV mutants could be related to subtle conformational changes resulting from the interaction between residues specific to each enzyme that are located at the interface between the fingers and the N-terminal domains.


2015 ◽  
Vol 59 (8) ◽  
pp. 4938-4945 ◽  
Author(s):  
Susanne Schmidt ◽  
Kathrin Bohn-Wippert ◽  
Peter Schlattmann ◽  
Roland Zell ◽  
Andreas Sauerbrei

ABSTRACTA total of 302 clinical herpes simplex virus 1 (HSV-1) strains, collected over 4 decades from 1973 to 2014, were characterized retrospectively for drug resistance. All HSV-1 isolates were analyzed genotypically for nonsynonymous mutations in the thymidine kinase (TK) and DNA polymerase (Pol) genes. The resistance phenotype against acyclovir (ACV) and/or foscarnet (FOS) was examined in the case of novel, unclear, or resistance-related mutations. Twenty-six novel natural polymorphisms could be detected in the TK gene and 69 in the DNA Pol gene. Furthermore, three novel resistance-associated mutations (two in the TK gene and one in the DNA Pol gene) were analyzed, and eight known but hitherto unclear amino acid substitutions (two encoded in TK and six in the DNA Pol gene) could be clarified. Between 1973 and 2014, the distribution of amino acid changes related to the natural gene polymorphisms of TK and DNA Pol remained largely stable. Resistance to ACV was confirmed phenotypically for 16 isolates, and resistance to ACV plus FOS was confirmed for 1 isolate. Acyclovir-resistant strains were observed from the year 1995 onwards, predominantly in immunosuppressed patients, especially those with stem cell transplantation, and the number of ACV-resistant strains increased during the last 2 decades. The data confirm the strong genetic variability among HIV-1 isolates, which is more pronounced in the DNA Pol gene than in the TK gene, and will facilitate considerably the rapid genotypic diagnosis of HSV-1 resistance.


1992 ◽  
Vol 3 (4) ◽  
pp. 243-247 ◽  
Author(s):  
P. J. Aduma ◽  
S. V. Gupta ◽  
A. L. Stuart

5-Methoxymethyl-2′-deoxyuridine (MMdUrd) is a selective anti-herpes agent that is dependent upon initial phosphorylation by Herpes simplex virus-induced deoxythymidine kinase. In order to determine its mechanism of action, MMdUrd was converted to the 5′-triphosphate (MMdUTP) and the nature of interaction of MMdUTP and dTTP with DNA polymerase of E. coli, HSV-1, and human α was investigated. The order of utilization of deoxyuridine analogues by bacterial and HSV-1 DNA polymerases for DNA synthesis was: dTTP > MMdUTP. In contrast, 5-methoxymethyl-2′-deoxycytidine-5′-triphosphate (MMdCTP) was a better substrate for HSV DNA polymerase compared to dCTP. MMdUTP is a competitive inhibitor of HSV-1 DNA polymerase with respect to dTTP incorporation (Ki = 2.9 × 10−6M). The IC50 values of MMdUTP for both HSV and human αDNA polymerases were 4.5 × 10 −6M. These data suggest that the selective activity of MMdUrd is due to its preferential phosphorylation by viral thymidine kinase and not at the DNA polymerase level. These results may also account for the difference in anti-HSV activity between MMdUrd and its deoxycytidine analogue.


1983 ◽  
Vol 211 (2) ◽  
pp. 439-445 ◽  
Author(s):  
E De Clercq ◽  
J Descamps ◽  
J Balzarini ◽  
T Fukui ◽  
H S Allaudeen

3′-NH2-BV-dUrd, the 3′-amino derivative of (E)-5-(2-bromovinyl)-2′-deoxyuridine, was found to be a potent and selective inhibitor of herpes simplex virus type 1 (HSV-1) and varicella-zoster virus (VZV) replication. 3′-NH2-BV-dUrd was about 4-12 times less potent but equally selective in its anti-herpes activity as BV-dUrd. Akin to BV-dUrd, 3′-NH2-BV-dUrd was much less inhibitory to herpes simplex virus type 2 than type 1. It was totally inactive against a thymidine kinase-deficient mutant of HSV-1. The 5′-triphosphate of 3′-NH2-BV-dUrd (3′-NH2-BV-dUTP) was evaluated for its inhibitory effects on purified herpes viral and cellular DNA polymerases. Among the DNA polymerases tested, HSV-1 DNA polymerase and DNA polymerase alpha were the most sensitive to inhibition by 3′-NH2-BV-dUTP (Ki values 0.13 and 0.10 microM, respectively). The Km/Ki ratio for DNA polymerase alpha was 47, as compared with 4.6 for HSV-1 DNA polymerase. Thus, the selectivity of 3′-NH2-BV-dUrd as an anti-herpes agent cannot be ascribed to a discriminative effect of its 5′-triphosphate at the DNA polymerase level. This selectivity most probably resides at the thymidine kinase level. 3′;-NH2-BV-dUrd would be phosphorylated preferentially by the HSV-1-induced thymidine kinase (Ki 1.9 microM, as compared with greater than 200 microM for the cellular thymidine kinase), and this preferential phosphorylation would confine the further action of the compound to the virus-infected cell.


2010 ◽  
Vol 54 (11) ◽  
pp. 4833-4842 ◽  
Author(s):  
Sonia Burrel ◽  
Claire Deback ◽  
Henri Agut ◽  
David Boutolleau

ABSTRACT The molecular mechanisms of herpes simplex virus (HSV) resistance to antiviral drugs interfering with viral DNA synthesis reported so far rely on the presence of mutations within UL23 (thymidine kinase [TK]) and UL30 (DNA polymerase) genes. The interpretation of genotypic antiviral resistance assay results requires the clear distinction between resistance mutations and natural interstrain sequence variations. The objectives of this work were to describe extensively the natural polymorphism of UL23 TK and UL30 DNA polymerase among HSV-1 and HSV-2 strains and the amino acid changes potentially associated with HSV resistance to antivirals. The sequence analysis of the full-length UL23 and UL30 genes was performed. Ninety-four drug-sensitive clinical isolates (43 HSV-1 and 51 HSV-2) and 3 laboratory strains (KOS, gHSV-2, and MS2) were studied for natural polymorphism, and 25 clinical isolates exhibiting phenotypic traits of resistance to antivirals were analyzed for drug resistance mutations. Our results showed that TK and DNA polymerase are highly conserved among HSV strains, with a weaker variability for HSV-2 strains. This study provided a precise map of the natural polymorphism of both viral enzymes among HSV-1 and HSV-2 isolates, with the identification of 15 and 51 polymorphisms never previously described for TK and DNA polymerase, respectively, which will facilitate the interpretation of genotypic antiviral-resistant testing. Moreover, the genotypic characterization of 25 drug-resistant HSV isolates revealed 8 new amino acid changes located in TK and potentially accounting for acyclovir (ACV) resistance.


2005 ◽  
Vol 49 (2) ◽  
pp. 606-611 ◽  
Author(s):  
Masayuki Saijo ◽  
Tatsuo Suzutani ◽  
Shigeru Morikawa ◽  
Ichiro Kurane

ABSTRACT Foscarnet is widely used for the treatment of acyclovir-resistant herpesvirus infections, and foscarnet-resistant herpesvirus infections are a serious concern in immunocompromised patients. Twenty-seven single-plaque isolates of herpes simplex virus type 1 (HSV-1) resistant to foscarnet were selected from foscarnet- and acyclovir-sensitive HSV-1 strain TAS by exposure to foscarnet, and the DNA polymerase genes were analyzed. The sensitivities of these mutants to foscarnet, cidofovir, S2242, acyclovir, ganciclovir, and penciclovir were determined. A single amino acid substitution, double amino acid substitutions, and a combination of a single amino acid substitution with a deletion or insertion of amino acid residues in the viral DNA polymerase were demonstrated in 21, 4, and 2 isolates, respectively. Of the 27 isolates, an amino acid substitution of serine for asparagine at amino acid position 724 in the DNA polymerase (724 S-N) was detected in 8 isolates. An amino acid substitution in conserved region II was demonstrated in these eight isolates as well as four other isolates. The mutation in the DNA polymerase responsible for resistance to foscarnet was located between the pre-IV region and conserved region V, especially within conserved region II. All the isolates were sensitive or hypersensitive to cidofovir and ganciclovir. Seven, 5, and 15 of the 27 isolates were also sensitive to S2242, acyclovir, and penciclovir, respectively. Thus, most of the foscarnet-resistant HSV-1 isolates were sensitive or hypersensitive to cidofovir and ganciclovir.


2003 ◽  
Vol 77 (18) ◽  
pp. 10147-10153 ◽  
Author(s):  
Yali Zhu ◽  
Kelly S. Trego ◽  
Liping Song ◽  
Deborah S. Parris

ABSTRACT Using a minicircle DNA primer-template, the wild-type catalytic subunit of herpes simplex virus type 1 (HSV-1) DNA polymerase (pol) was shown to lack significant strand displacement activity with or without its processivity factor, UL42. However, an exonuclease-deficient (exo−) pol (D368A) was capable of slow strand displacement. Although UL42 increased the rate (2/s) and processivity of strand displacement by exo− pol, the rate was slower than that for gap-filling synthesis. High inherent excision rates on matched primer-templates and rapid idling-turnover (successive rounds of excision and polymerization) of exo-proficient polymerases correlated with poor strand displacement activity. The results suggest that the exo activity of HSV-1 pol modulates its ability to engage in strand displacement, a function that may be important to the viability and genome stability of the virus.


Sign in / Sign up

Export Citation Format

Share Document