scholarly journals Independent Evolution of Human Immunodeficiency Virus (HIV) Drug Resistance Mutations in Diverse Areas of the Brain in HIV-Infected Patients, with and without Dementia, on Antiretroviral Treatment

2004 ◽  
Vol 78 (18) ◽  
pp. 10133-10148 ◽  
Author(s):  
Theresa K. Smit ◽  
Bruce J. Brew ◽  
Wallace Tourtellotte ◽  
Susan Morgello ◽  
Benjamin B. Gelman ◽  
...  

ABSTRACT AIDS dementia complex (ADC) in human immunodeficiency virus (HIV)-infected patients continues to be a problem in the era of highly active antiretroviral therapy (HAART). A better understanding of the drug resistance mutation patterns that emerge in the central nervous system (CNS) during HAART is of paramount importance as these differences in drug resistance mutations may explain underlying reasons for poor penetration of antiretroviral drugs into the CNS and suboptimal concentrations of the drugs that may reside in the brains of HIV-infected individuals during therapy. Thus, we provide a detailed analysis of HIV type 1 (HIV-1) protease and reverse transcriptase (RT) genes derived from different regions of the brains of 20 HIV-1-infected patients (5 without ADC, 2 with probable ADC, and 13 with various stages of ADC) on antiretroviral therapy. We show the compartmentalization and independent evolution of both primary and secondary drug resistance mutations to both RT and protease inhibitors in diverse regions of the CNS of HIV-infected patients, with and without dementia, on antiretroviral therapy. Our results suggest that the independent evolution of drug resistance mutations in diverse areas of the CNS may emerge as a consequence of incomplete suppression of HIV, probably related to suboptimal drug levels in the CNS and drug selection pressure. The emergence of resistant virus in the CNS may have considerable influence on the outcome of neurologic disease and also the reseeding of HIV in the systemic circulation upon failure of therapy.

2020 ◽  
Vol 221 (12) ◽  
pp. 1962-1972 ◽  
Author(s):  
Philip L Tzou ◽  
Diane Descamps ◽  
Soo-Yon Rhee ◽  
Dana N Raugi ◽  
Charlotte Charpentier ◽  
...  

Abstract Background HIV-1 and HIV-2 differ in their antiretroviral (ARV) susceptibilities and drug resistance mutations (DRMs). Methods We analyzed published HIV-2 pol sequences to identify HIV-2 treatment-selected mutations (TSMs). Mutation prevalences were determined by HIV-2 group and ARV status. Nonpolymorphic mutations were those in <1% of ARV-naive persons. TSMs were those associated with ARV therapy after multiple comparisons adjustment. Results We analyzed protease (PR) sequences from 483 PR inhibitor (PI)-naive and 232 PI-treated persons; RT sequences from 333 nucleoside RT inhibitor (NRTI)-naive and 252 NRTI-treated persons; and integrase (IN) sequences from 236 IN inhibitor (INSTI)-naive and 60 INSTI-treated persons. In PR, 12 nonpolymorphic TSMs occurred in ≥11 persons: V33I, K45R, V47A, I50V, I54M, T56V, V62A, A73G, I82F, I84V, F85L, L90M. In RT, 9 nonpolymorphic TSMs occurred in ≥10 persons: K40R, A62V, K70R, Y115F, Q151M, M184VI, S215Y. In IN, 11 nonpolymorphic TSMs occurred in ≥4 persons: Q91R, E92AQ, T97A, G140S, Y143G, Q148R, A153G, N155H, H156R, R231 5-amino acid insertions. Nine of 32 nonpolymorphic TSMs were previously unreported. Conclusions This meta-analysis confirmed the ARV association of previously reported HIV-2 DRMs and identified novel TSMs. Genotypic and phenotypic studies of HIV-2 TSMs will improve approaches to predicting HIV-2 ARV susceptibility and treating HIV-2–infected persons.


2004 ◽  
Vol 20 (11) ◽  
pp. 1166-1172 ◽  
Author(s):  
Said H.S. Al Dhahry ◽  
Euan M. Scrimgeour ◽  
Abdul Raouf Al Suwaid ◽  
Mohammed R.M.Y. Al Lawati ◽  
Hussein S. El Khatim ◽  
...  

2021 ◽  
Vol 1 (1) ◽  
pp. 113-123
Author(s):  
Ahmad A. Hachem ◽  
Essa H. Hariri ◽  
Anthony Mansour ◽  
Jacques Mokhbat

Background: Antiretroviral drug resistance remains a significant problem in the clinical management of patients infected with the Human Immunodeficiency Virus type-1. Aim: This study investigates and reports data on the molecular characterization of HIV-1 isolates from patients who are in a state of therapy failure. Methods: This is a retrospective study conducted on 65 patients in therapy failure. Inclusion criteria included patients diagnosed as being in therapy failure between the years 2009 and 2013. We defined ART failure as either a failure to achieve viral suppression or a failure to detect viral loads below 500 copies/mL after virological suppression in at least two plasma samples.  We used the published WHO list for surveillance of transmitted resistance and the Stanford HIV Drug Resistance Database to identify drug resistance mutations. Results: 65% of the participants had at least one drug resistance mutation (DRM). 12% of the population sampled had resistance to only one ART class, 32% presented with resistance to two classes of antiretroviral drugs, and 20% had resistance to all three classes of drugs. The prevalence of nucleoside transcriptase inhibitor (NRTI) mutations was 55%, the most common DRM being M184V. The prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations was 58%, with the most common mutation being the K103N mutation. The prevalence of protease inhibitors drug resistance mutations was 23%, with mutations V82A and I47V being present in 10% of the study population. Conclusion: Our study is the first molecular characterization of DRM emergence in HIV-1 strains from patients failing antiretroviral therapy in Lebanon. Continuous monitoring of resistance patterns for HIV in the country is necessary to tackle the emergent drug resistance.


2002 ◽  
Vol 76 (18) ◽  
pp. 9253-9259 ◽  
Author(s):  
Louis M. Mansky ◽  
Dennis K. Pearl ◽  
Lisa C. Gajary

ABSTRACT Replication of drug-resistant human immunodeficiency virus type 1 (HIV-1) in the presence of drug can lead to the failure of antiretroviral drug treatment. Drug failure is associated with the accumulation of drug resistance mutations. Previous studies have shown that 3′-azido-3′-deoxythymidine (AZT), (−)2′,3′-dideoxy-3′-thiacytidine (3TC), and AZT-resistant HIV-1 reverse transcriptase (RT) can increase the virus in vivo mutation rate. In this study, the combined effects of drug-resistant RT and antiretroviral drugs on the HIV-1 mutant frequency were determined. In most cases, a multiplicative effect was observed with AZT-resistant or AZT/3TC dually resistant RT and several drugs (i.e., AZT, 3TC, hydroxyurea, and thymidine) and led to increases in the odds of recovering virus mutants to over 20 times that of the HIV-1 mutant frequency in the absence of drug or drug-resistance mutations. This observation indicates that HIV-1 can mutate at a significantly higher rate when drug-resistant virus replicates in the presence of drug. These increased mutant frequencies could have important implications for HIV-1 population dynamics and drug therapy regimens.


Medicine ◽  
2019 ◽  
Vol 98 (6) ◽  
pp. e14313 ◽  
Author(s):  
Christopher Z. Abana ◽  
Kwamena W.C. Sagoe ◽  
Evelyn Y. Bonney ◽  
Edward K. Maina ◽  
Ishmael D. Aziati ◽  
...  

2004 ◽  
Vol 48 (5) ◽  
pp. 1570-1580 ◽  
Author(s):  
Giada A. Locatelli ◽  
Giuseppe Campiani ◽  
Reynel Cancio ◽  
Elena Morelli ◽  
Anna Ramunno ◽  
...  

ABSTRACT We have previously described a novel class of nonnucleoside reverse transcriptase (RT) inhibitors, the pyrrolobenzoxazepinone (PBO) and the pyridopyrrolooxazepinone (PPO) derivatives, which were effective inhibitors of human immunodeficiency virus type 1 (HIV-1) RT, either wild type or carrying known drug resistance mutations (G. Campiani et al., J. Med. Chem. 42:4462-4470, 1999). The lead compound of the PPO class, (R)-(−)-PPO464, was shown to selectively target the ternary complex formed by the viral RT with its substrates nucleic acid and nucleotide (G. Maga et al., J. Biol. Chem. 276:44653-44662, 2001). In order to better understand the structural basis for this selectivity, we exploited some PBO analogs characterized by various substituents at C-3 and by different inhibition potencies and drug resistance profiles, and we studied their interaction with HIV-1 RT wild type or carrying the drug resistance mutations L100I and V106A. Our kinetic and thermodynamic analyses showed that the formation of the complex between the enzyme and the nucleotide increased the inhibition potency of the compound PBO354 and shifted the free energy (energy of activation, ΔG#) for inhibitor binding toward more negative values. The V106A mutation conferred resistance to PBO 354 by increasing its dissociation rate from the enzyme, whereas the L100I mutation mainly decreased the association rate. This latter mutation also caused a severe reduction in the catalytic efficiency of the RT. These results provide a correlation between the efficiency of nucleotide utilization by RT and its resistance to PBO inhibition.


2020 ◽  
Vol 17 ◽  
Author(s):  
Behzad Dehghani ◽  
Zahra Hasanshahi ◽  
Tayebeh Hashempour ◽  
Parvin Afsar Kazerooni

Background: The rate of Human Immunodeficiency Virus type 1 (HIV-1) infection in Iran has increased dramatically in the last few years. Objective: The aim of this study was to investigate the HIV subtype amongst all Iranian HIV sequences, using 8 online websites. Methods: In this study, 637 sequences of polymerase, and gag genes of HIV-1 were obtained from NCBI. HIV-1 subtyping was done, using 8 reliable software. Results: The final results of the 8 online tools indicated that the majority of sequences were HIV-1 subtype CRF35 AD. However, it appeared that in some genes a few programs could not determine specific subtypes and in some cases they described different subtypes. Conclusion: Considering the CRF35 AD diagram, it was clear that integrase was not an appropriate region to define this subtype. Also the full length of gag gene should be used for subtyping. For CRF1, AE envelop gene is a reliable region to define this subtype. Stanford software was used to determine the drug resistance prevalence and in 5.7% of the sequences, drug resistance mutations were found.


Sign in / Sign up

Export Citation Format

Share Document