scholarly journals Human Immunodeficiency Virus type 1 Drug Resistance Mutations in Patients Failing Antiretroviral Therapy in Lebanon from 2009 to 2013

2021 ◽  
Vol 1 (1) ◽  
pp. 113-123
Author(s):  
Ahmad A. Hachem ◽  
Essa H. Hariri ◽  
Anthony Mansour ◽  
Jacques Mokhbat

Background: Antiretroviral drug resistance remains a significant problem in the clinical management of patients infected with the Human Immunodeficiency Virus type-1. Aim: This study investigates and reports data on the molecular characterization of HIV-1 isolates from patients who are in a state of therapy failure. Methods: This is a retrospective study conducted on 65 patients in therapy failure. Inclusion criteria included patients diagnosed as being in therapy failure between the years 2009 and 2013. We defined ART failure as either a failure to achieve viral suppression or a failure to detect viral loads below 500 copies/mL after virological suppression in at least two plasma samples.  We used the published WHO list for surveillance of transmitted resistance and the Stanford HIV Drug Resistance Database to identify drug resistance mutations. Results: 65% of the participants had at least one drug resistance mutation (DRM). 12% of the population sampled had resistance to only one ART class, 32% presented with resistance to two classes of antiretroviral drugs, and 20% had resistance to all three classes of drugs. The prevalence of nucleoside transcriptase inhibitor (NRTI) mutations was 55%, the most common DRM being M184V. The prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI) mutations was 58%, with the most common mutation being the K103N mutation. The prevalence of protease inhibitors drug resistance mutations was 23%, with mutations V82A and I47V being present in 10% of the study population. Conclusion: Our study is the first molecular characterization of DRM emergence in HIV-1 strains from patients failing antiretroviral therapy in Lebanon. Continuous monitoring of resistance patterns for HIV in the country is necessary to tackle the emergent drug resistance.

2002 ◽  
Vol 76 (18) ◽  
pp. 9253-9259 ◽  
Author(s):  
Louis M. Mansky ◽  
Dennis K. Pearl ◽  
Lisa C. Gajary

ABSTRACT Replication of drug-resistant human immunodeficiency virus type 1 (HIV-1) in the presence of drug can lead to the failure of antiretroviral drug treatment. Drug failure is associated with the accumulation of drug resistance mutations. Previous studies have shown that 3′-azido-3′-deoxythymidine (AZT), (−)2′,3′-dideoxy-3′-thiacytidine (3TC), and AZT-resistant HIV-1 reverse transcriptase (RT) can increase the virus in vivo mutation rate. In this study, the combined effects of drug-resistant RT and antiretroviral drugs on the HIV-1 mutant frequency were determined. In most cases, a multiplicative effect was observed with AZT-resistant or AZT/3TC dually resistant RT and several drugs (i.e., AZT, 3TC, hydroxyurea, and thymidine) and led to increases in the odds of recovering virus mutants to over 20 times that of the HIV-1 mutant frequency in the absence of drug or drug-resistance mutations. This observation indicates that HIV-1 can mutate at a significantly higher rate when drug-resistant virus replicates in the presence of drug. These increased mutant frequencies could have important implications for HIV-1 population dynamics and drug therapy regimens.


2004 ◽  
Vol 48 (5) ◽  
pp. 1570-1580 ◽  
Author(s):  
Giada A. Locatelli ◽  
Giuseppe Campiani ◽  
Reynel Cancio ◽  
Elena Morelli ◽  
Anna Ramunno ◽  
...  

ABSTRACT We have previously described a novel class of nonnucleoside reverse transcriptase (RT) inhibitors, the pyrrolobenzoxazepinone (PBO) and the pyridopyrrolooxazepinone (PPO) derivatives, which were effective inhibitors of human immunodeficiency virus type 1 (HIV-1) RT, either wild type or carrying known drug resistance mutations (G. Campiani et al., J. Med. Chem. 42:4462-4470, 1999). The lead compound of the PPO class, (R)-(−)-PPO464, was shown to selectively target the ternary complex formed by the viral RT with its substrates nucleic acid and nucleotide (G. Maga et al., J. Biol. Chem. 276:44653-44662, 2001). In order to better understand the structural basis for this selectivity, we exploited some PBO analogs characterized by various substituents at C-3 and by different inhibition potencies and drug resistance profiles, and we studied their interaction with HIV-1 RT wild type or carrying the drug resistance mutations L100I and V106A. Our kinetic and thermodynamic analyses showed that the formation of the complex between the enzyme and the nucleotide increased the inhibition potency of the compound PBO354 and shifted the free energy (energy of activation, ΔG#) for inhibitor binding toward more negative values. The V106A mutation conferred resistance to PBO 354 by increasing its dissociation rate from the enzyme, whereas the L100I mutation mainly decreased the association rate. This latter mutation also caused a severe reduction in the catalytic efficiency of the RT. These results provide a correlation between the efficiency of nucleotide utilization by RT and its resistance to PBO inhibition.


2020 ◽  
Vol 17 ◽  
Author(s):  
Behzad Dehghani ◽  
Zahra Hasanshahi ◽  
Tayebeh Hashempour ◽  
Parvin Afsar Kazerooni

Background: The rate of Human Immunodeficiency Virus type 1 (HIV-1) infection in Iran has increased dramatically in the last few years. Objective: The aim of this study was to investigate the HIV subtype amongst all Iranian HIV sequences, using 8 online websites. Methods: In this study, 637 sequences of polymerase, and gag genes of HIV-1 were obtained from NCBI. HIV-1 subtyping was done, using 8 reliable software. Results: The final results of the 8 online tools indicated that the majority of sequences were HIV-1 subtype CRF35 AD. However, it appeared that in some genes a few programs could not determine specific subtypes and in some cases they described different subtypes. Conclusion: Considering the CRF35 AD diagram, it was clear that integrase was not an appropriate region to define this subtype. Also the full length of gag gene should be used for subtyping. For CRF1, AE envelop gene is a reliable region to define this subtype. Stanford software was used to determine the drug resistance prevalence and in 5.7% of the sequences, drug resistance mutations were found.


1999 ◽  
Vol 37 (7) ◽  
pp. 2291-2296 ◽  
Author(s):  
Rob Schuurman ◽  
Lisa Demeter ◽  
Patricia Reichelderfer ◽  
Jolanda Tijnagel ◽  
Tom de Groot ◽  
...  

A panel (ENVA-1) of well-defined blinded samples containing wild-type and mutant human immunodeficiency virus type 1 (HIV-1) reverse transcriptase was analyzed by automated DNA sequencing in 23 laboratories worldwide. Drug resistance mutations at codons 41, 215, and 184 were present in the panel samples at different ratios to the wild type. The presence of mutant genotypes was determined qualitatively and quantitatively. All laboratories reported the presence of sequence heterogeneities at codons 41, 215, and 184 in one or more of the panel samples, though not all reported the correct codon genotypes. Two laboratories reported a mutant genotype in samples containing only the wild type, whereas two and three laboratories failed to detect the mutant genotypes at codons 41 and 215, respectively, in a completely mutant DNA population. Mutations present at relative concentrations of 25% of the total DNA population were successfully identified by 13 of 23, 10 of 23, and 16 of 23 labs for codons 41, 215, and 184Val, respectively. For more than 80% of those laboratories that qualitatively detected the presence of a mutation correctly, the estimated wild type/mutant ratio was less than 25% different from the input ratio in those samples containing 25 to 50% or 75% mutant input. This first multicenter study on the quality of DNA sequencing approaches for identifying HIV-1 drug resistance mutations revealed large interlaboratory differences in the quality of the results. The application of these procedures in their current state would in several cases lead to inaccurate or even incorrect diagnostic results. Therefore, proper quality control and standardization are urgently needed.


2002 ◽  
Vol 15 (2) ◽  
pp. 247-277 ◽  
Author(s):  
Robert W. Shafer

SUMMARY There are 16 approved human immunodeficiency virus type 1 (HIV-1) drugs belonging to three mechanistic classes: protease inhibitors, nucleoside and nucleotide reverse transcriptase (RT) inhibitors, and nonnucleoside RT inhibitors. HIV-1 resistance to these drugs is caused by mutations in the protease and RT enzymes, the molecular targets of these drugs. Drug resistance mutations arise most often in treated individuals, resulting from selective drug pressure in the presence of incompletely suppressed virus replication. HIV-1 isolates with drug resistance mutations, however, may also be transmitted to newly infected individuals. Three expert panels have recommended that HIV-1 protease and RT susceptibility testing should be used to help select HIV drug therapy. Although genotypic testing is more complex than typical antimicrobial susceptibility tests, there is a rich literature supporting the prognostic value of HIV-1 protease and RT mutations. This review describes the genetic mechanisms of HIV-1 drug resistance and summarizes published data linking individual RT and protease mutations to in vitro and in vivo resistance to the currently available HIV drugs.


2020 ◽  
Vol 221 (12) ◽  
pp. 1962-1972 ◽  
Author(s):  
Philip L Tzou ◽  
Diane Descamps ◽  
Soo-Yon Rhee ◽  
Dana N Raugi ◽  
Charlotte Charpentier ◽  
...  

Abstract Background HIV-1 and HIV-2 differ in their antiretroviral (ARV) susceptibilities and drug resistance mutations (DRMs). Methods We analyzed published HIV-2 pol sequences to identify HIV-2 treatment-selected mutations (TSMs). Mutation prevalences were determined by HIV-2 group and ARV status. Nonpolymorphic mutations were those in <1% of ARV-naive persons. TSMs were those associated with ARV therapy after multiple comparisons adjustment. Results We analyzed protease (PR) sequences from 483 PR inhibitor (PI)-naive and 232 PI-treated persons; RT sequences from 333 nucleoside RT inhibitor (NRTI)-naive and 252 NRTI-treated persons; and integrase (IN) sequences from 236 IN inhibitor (INSTI)-naive and 60 INSTI-treated persons. In PR, 12 nonpolymorphic TSMs occurred in ≥11 persons: V33I, K45R, V47A, I50V, I54M, T56V, V62A, A73G, I82F, I84V, F85L, L90M. In RT, 9 nonpolymorphic TSMs occurred in ≥10 persons: K40R, A62V, K70R, Y115F, Q151M, M184VI, S215Y. In IN, 11 nonpolymorphic TSMs occurred in ≥4 persons: Q91R, E92AQ, T97A, G140S, Y143G, Q148R, A153G, N155H, H156R, R231 5-amino acid insertions. Nine of 32 nonpolymorphic TSMs were previously unreported. Conclusions This meta-analysis confirmed the ARV association of previously reported HIV-2 DRMs and identified novel TSMs. Genotypic and phenotypic studies of HIV-2 TSMs will improve approaches to predicting HIV-2 ARV susceptibility and treating HIV-2–infected persons.


Sign in / Sign up

Export Citation Format

Share Document