scholarly journals Impact of the Placental Cytokine-Chemokine Balance on Regulation of Cell-Cell Contact-Induced Human Immunodeficiency Virus Type 1 Translocation across a Trophoblastic Barrier In Vitro

2005 ◽  
Vol 79 (19) ◽  
pp. 12304-12310 ◽  
Author(s):  
Muriel Derrien ◽  
Albert Faye ◽  
Guillermina Dolcini ◽  
Gérard Chaouat ◽  
Françoise Barré-Sinoussi ◽  
...  

ABSTRACT Cells constituting the placental barrier secrete soluble factors that may participate in controlling human immunodeficiency virus type 1 (HIV-1) transmission from the mother to the fetus. In this study, we asked whether placental soluble factors (PSF) could limit cell-cell contact inducing HIV-1 production that occurs after inoculation of HIV-1-infected peripheral blood mononuclear cells (HIV-1+ PBMCs) onto trophoblast-derived BeWo cells grown as tight and polarized barriers in a two-chamber system. The activity of recombinant chemokines and cytokines expressed by placental tissue and of factors secreted by either early or term placentae of HIV-1-negative women, was analyzed. We identified chemokines (RANTES and MIP-1β) and cytokines (tumor necrosis factor alpha and interleukin-8) that decreased and increased, respectively, viral production in trophoblast barrier cells inoculated with HIV-1+ PBMCs. Unexpectedly, factors secreted by either early or term placentae of HIV-1-negative women enhanced viral production. Nevertheless, the same PSF did not favor infection of trophoblastic barriers with cell-free HIV-1 and strongly reduced viral production in PBMCs infected with cell-free HIV-1. Moreover, PSF contained chemokines (RANTES and MIP-1β) and a cytokine, leukemia inhibitory factor, exhibiting a strong anti-HIV-1 activity in our model of cell-to-cell infection. Together these data suggested that at the maternal interface the global activity of PSF is related to the synergistic action of several soluble factors with a balance in favor of an enhancing activity on the passage of viruses across the trophoblast barrier. This could explain the presence of viral sequences in trophoblasts in all placentae of HIV-1-infected women.

2003 ◽  
Vol 77 (6) ◽  
pp. 3634-3646 ◽  
Author(s):  
Vandana Kalia ◽  
Surojit Sarkar ◽  
Phalguni Gupta ◽  
Ronald C. Montelaro

ABSTRACT Two highly conserved cationic amphipathic α-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses . Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that the highly conserved LLP domains perform critical but distinct functions in Env incorporation and fusogenicity.


2001 ◽  
Vol 75 (20) ◽  
pp. 9703-9712 ◽  
Author(s):  
Eileen S. Lee ◽  
Huiyu Zhou ◽  
Andrew J. Henderson

ABSTRACT Macrophages are early targets of human immunodeficiency virus type 1 (HIV-1) infection and serve as potential reservoirs for long-term infection. Through inflammatory mediators and direct cell contact, infected macrophages interact with neighboring cell populations, such as the endothelium, which create a microenvironment favorable for HIV-1 replication. We hypothesize that the transcriptional activator C/EBPβ is critical for macrophages to respond to endothelial cell-derived signals. We show that endothelial cells significantly enhance C/EBPβ binding activity and HIV-1 replication in macrophages. This increase in HIV-1 transcription is due to cell-cell contact as well as the production of soluble factors, mediated in part by ICAM-1 and interleukin 6, respectively. Furthermore, C/EBP factors are necessary for endothelial cell-dependent activation of HIV-1 transcription in macrophages, and HIV-1 induction can be inhibited by a C/EBP dominant-negative protein. In addition, C/EBP binding sites are necessary for efficient LTR activity and HIV-1 replication in the presence of endothelial cells. Taken together, these results indicate that endothelial cells, through the activation of C/EBPβ, provide a microenvironment that supports HIV-1 replication in monocytes/macrophages.


2006 ◽  
Vol 87 (6) ◽  
pp. 1589-1593 ◽  
Author(s):  
Makoto Kubo ◽  
Hironori Nishitsuji ◽  
Kiyoshi Kurihara ◽  
Takaya Hayashi ◽  
Takao Masuda ◽  
...  

It was found previously that human immunodeficiency virus type 1 (HIV-1)-irrelevant CD8+ cytotoxic T lymphocytes (CTLs) from uninfected donors suppressed HIV-1 replication in a cell-contact-dependent manner. However, one of these CTL lines (CTL-3) also significantly suppressed HIV-1 replication through its supernatant. Here, the suppressive fraction from CTL-3 supernatant was purified and analysed by mass spectrometry. A protein band specific for the suppressive fraction was identified as arginine deiminase from Mycoplasma arginini, which catalyses the hydrolysis of arginine to citrulline. Addition of l-arginine or the use of antibiotics against mycoplasma restored supernatant-mediated but not cell-contact-dependent suppression of HIV-1 replication by CTL-3, clearly indicating that arginine deiminase of M. arginini in the supernatants suppressed HIV-1 replication, which is independent of CD8+ T-cell-mediated HIV-1 suppression via cell contact. Arginine deiminase is known to be a chemotherapeutic agent against arginine-requiring tumours and these results suggest that it also has potential application in antiviral therapy.


2007 ◽  
Vol 81 (15) ◽  
pp. 7873-7884 ◽  
Author(s):  
Clare Jolly ◽  
Quentin J. Sattentau

ABSTRACT Human immunodeficiency virus type-1 (HIV-1) egress from infected CD4+ T cells is thought to be via assembly and budding at the plasma membrane and may involve components of the T-cell secretory apparatus, including tetraspanins. However, many studies on HIV-1 assembly have examined the trafficking of viral proteins in isolation, and most have used immortalized epithelial, fibroblastic, or hematopoietic cell lines that may not necessarily reflect natural infection of susceptible T cells. Here we have used immunofluorescence and cryoimmunoelectron microscopy (CEM) to examine protein transport during HIV-1 assembly in productively infected Jurkat CD4+ T cells and primary CD4+ T cells. The HIV-1 envelope glycoprotein (Env) and the core protein (Gag) colocalize strongly with CD63 and CD81 and less strongly with CD9, whereas no colocalization was seen between Env or Gag and the late endosome/lysosomal marker Lamp2. CEM revealed incorporation of CD63 and CD81 but not Lamp2 into virions budding at the plasma membrane, and this was supported by immunoprecipitation studies, confirming that HIV-1 egress in T cells is trafficked via tetraspanin-enriched membrane domains (TEMs) that are distinct from lysosomal compartments. CD63, CD81, and, to a lesser extent, CD9 were recruited to the virological synapse (VS), and antibodies against these tetraspanins reduced VS formation. We propose that HIV-1 promotes virus assembly and cell-cell transfer in T cells by targeting plasma membrane TEMs.


2007 ◽  
Vol 81 (17) ◽  
pp. 9078-9087 ◽  
Author(s):  
Claudia Muratori ◽  
Antonella Sistigu ◽  
Eliana Ruggiero ◽  
Mario Falchi ◽  
Ilaria Bacigalupo ◽  
...  

ABSTRACT It was previously reported that human immunodeficiency virus type 1 (HIV-1) spreads in CD4 lymphocytes through cell-to-cell transmission. Here we report that HIV-1-infected macrophages, but not lymphocytes, transmit HIV-1 products to CD4-negative cells of either epithelial, neuronal, or endothelial origin in the absence of overt HIV-1 infection. This phenomenon was detectable as early as 1 h after the start of cocultivation and depended on cell-to-cell contact but not on the release of viral particles from donor cells. Transfer of HIV-1 products occurred upon their polarization and colocalization within zones of cell-to-cell contact similar to virological synapses. Neither HIV-1 Env nor Nef expression was required but, interestingly, we found that an HIV-1-dependent increase in matrix metalloproteinase 9 production from donor cells significantly contributed to the cell-to-cell transmission of the viral products. The macrophage-driven transfer of HIV-1 products to diverse CD4-negative cell types may have a significant role in AIDS pathogenesis.


2008 ◽  
Vol 82 (16) ◽  
pp. 7773-7789 ◽  
Author(s):  
Eliana Ruggiero ◽  
Roberta Bona ◽  
Claudia Muratori ◽  
Maurizio Federico

ABSTRACT Human immunodeficiency virus type 1 (HIV-1)-infected cells transmit viral products to uninfected CD4+ cells very rapidly. However, the natures of the transmitted viral products and the mechanism of transmission, as well as the relative virological consequences, have not yet been fully clarified. We studied the virological events occurring a few hours after contact between HIV-1-infected and uninfected CD4+ cells using a coculture cell system in which the virus expression in target cells could be monitored through the induction of a green fluorescent protein reporter gene driven by HIV-1 long terminal repeats. Within 16 h of coculture, we observed two phenomena not related to the cell-free virus infection, i.e., the formation of donor-target cell fusions and a fusion-independent internalization of viral particles likely occurring at least in part through intercellular connections. Both events depended on the expression of Env and CD4 in donor and target cells, respectively, whereas the HIV-1 internalization required clathrin activity in target cells. Importantly, both phenomena were also observed in cocultures of primary CD4+ lymphocytes, while primary macrophages supported only HIV-1 endocytosis. By investigating the virological consequences of these events, we noticed that while fused cells released infectious HIV-1 particles, albeit with reduced efficiency compared with donor cells, no virus expression was detectable upon HIV-1 endocytosis in target cells. In sum, the HIV-1 transmission following contact between an HIV-1-infected and an uninfected CD4+ cell can occur through different mechanisms, leading to distinguishable virological outcomes.


Sign in / Sign up

Export Citation Format

Share Document