primary human monocyte
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Camilla E. Hippee ◽  
Brajesh K. Singh ◽  
Andrew L. Thurman ◽  
Ashley L. Cooney ◽  
Alejandro A. Pezzulo ◽  
...  

ABSTRACTMeasles virus (MeV) is the most contagious human virus, but we do not fully understand why. Unlike most respiratory viruses, MeV does not infect the airway epithelium immediately. MeV traverses the epithelium within immune cells that carry it to lymphatic organs where amplification occurs. Infected immune cells then synchronously deliver large amounts of virus to the airways. However, our understanding of MeV replication in airway epithelia is limited. To model it, we use well-differentiated primary cultures of human airway epithelial cells (HAE) from lung donors. In HAE, MeV spreads directly cell-to-cell forming infectious centers that grow for ∼3-5 days, are stable for a few days, and then disappear. Transepithelial electrical resistance remains intact during the entire course of HAE infection, thus we hypothesized that MeV infectious centers may slough off while preserving epithelial function. After documenting by confocal microscopy that infectious centers progressively detach from HAE, we recovered apical washes and separated cell-associated from cell-free virus by centrifugation. Virus titers were about 10 times higher in the cell-associated fraction than in the supernatant. In sloughed infectious centers, ciliary beating persisted and apoptotic markers were not readily detected, suggesting that they retain functional metabolism. Cell-associated MeV infected primary human monocyte-derived macrophages, modeling the first stage of infection in a new host. Single-cell RNA sequencing identified wound healing, cell growth, and cell differentiation as biological processes relevant for infectious center sloughing. 5-ethynyl-2’-deoxyuridine (EdU) staining located proliferating cells underneath infectious centers. Thus, cells located below infectious centers divide and differentiate to repair the extruded infected epithelial patch. As an extension of these studies, we postulate that expulsion of infectious centers through coughing and sneezing could contribute to MeV’s strikingly high reproductive number by allowing the virus to survive longer in the environment and by delivering a high infectious dose to the next host.AUTHOR SUMMARYMeasles virus (MeV) is a respiratory pathogen that infects millions worldwide each year. Although sometimes mischaracterized as an innocuous childhood disease, measles remains a leading cause of death for children under five. MeV is the most contagious human virus and requires vaccination rates above 90% to maintain herd immunity. Global decreases in vaccination rates over the past ten years contributed to recent, widespread MeV outbreaks. We uncover here a novel mechanism by which MeV exits the human airways that may explain why it is much more contagious than other viruses. We document that infected cells containing cell-associated virus slough en masse from the airway epithelial sheet. These expelled infectious centers are metabolically active and can transmit infection to primary human monocyte-derived macrophages more efficiently than cell-free virus particles. Thus, cell-associated MeV can transmit host-to-host, a new paradigm for efficient respiratory virus transmission.


2019 ◽  
Vol 4 ◽  
pp. 43
Author(s):  
Rachel E. Simmonds

Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the MIR155HG/BIC gene (pri-miR-155). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring pri-miR-155. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition reduced these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation revealed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF secretion after 2hrs in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p. Further work is required to establish whether its low abundance, even at the transient peak, is sufficient for biological activity and to determine whether there are specific mechanisms determining its biogenesis from miR-155 precursors


2019 ◽  
Vol 4 ◽  
pp. 43 ◽  
Author(s):  
Rachel E. Simmonds

Background: The innate immune response is a tightly regulated process that reacts rapidly in response to pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS). Evidence is accumulating that microRNAs contribute to this, although few studies have examined the early events that constitute the “primary” response. Methods: LPS-dependent changes to miRNA expression were studied in primary human monocyte-derived macrophages (1°MDMs). An unbiased screen by microarray was validated by qPCR and a method for the absolute quantitation of miRNAs was also developed, utilising 5’ phosphorylated RNA oligonucleotide templates. RNA immunoprecipitation was performed to explore incorporation of miRNAs into the RNA-induced silencing complex (RISC). The effect of miRNA functional inhibition on TNF expression (mRNA and secretion) was investigated. Results: Of the 197 miRNAs expressed in 1°MDMs, only five were induced >1.5-fold. The most strongly induced was miR-155-3p, the partner strand to miR-155-5p, which are both derived from the BIC gene (B cell integration cluster, MIR155HG). The abundance of miR-155-3p was induced transiently ~250-fold at 2-4hrs and then returned towards baseline, mirroring the BIC mRNA. Other PAMPs, IL-1β, and TNF caused similar responses. IL-10, NF-κB, and JNK inhibition suppressed these responses, unlike cytokine-suppressing mycolactone. Absolute quantitation showed that miRNA abundance varies widely from donor-to-donor, and showed that miR-155-3p abundance is substantially less than miR-155-5p in unstimulated cells. However, at its peak there were 446-1,113 copies/cell, and miR-155-3p was incorporated into the RISC with an efficiency similar to miR-16-5p and miR-155-5p. Inhibition of neither miRNA affected TNF expression in 1°MDMs, but technical challenges here are noted. Conclusions: Dynamic regulation of miRNAs during the primary response is rare, with the exception of miR-155-3p, which transiently achieves levels that might have a biological effect. Further work on this candidate would need to overcome the technical challenges of the broad-ranging effects of liposomes on 1°MDMs.


2018 ◽  
Vol 9 ◽  
Author(s):  
Chidchamai Kewcharoenwong ◽  
Satria A. Prabowo ◽  
Gregory J. Bancroft ◽  
Helen A. Fletcher ◽  
Ganjana Lertmemongkolchai

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Gabriele Domschke ◽  
Fabian Linden ◽  
Lukas Pawig ◽  
Anna Hafner ◽  
Mohammadreza Akhavanpoor ◽  
...  

Author(s):  
Francesca Graziano ◽  
Giulia Aimola ◽  
Greta Forlani ◽  
Filippo Turrini ◽  
Roberto Accolla ◽  
...  

Immunobiology ◽  
2017 ◽  
Vol 222 (10) ◽  
pp. 952-959 ◽  
Author(s):  
Kondaiah Moganti ◽  
Feng Li ◽  
Christina Schmuttermaier ◽  
Sarah Riemann ◽  
Harald Klüter ◽  
...  

Virology ◽  
2016 ◽  
Vol 491 ◽  
pp. 106-114 ◽  
Author(s):  
Joseph A. Hollenbaugh ◽  
Catherine Montero ◽  
Raymond F. Schinazi ◽  
Joshua Munger ◽  
Baek Kim

Sign in / Sign up

Export Citation Format

Share Document