scholarly journals The Autographa californica Multiple Nucleopolyhedrovirus ie0-ie1 Gene Complex Is Essential for Wild-Type Virus Replication, but either IE0 or IE1 Can Support Virus Growth

2005 ◽  
Vol 79 (8) ◽  
pp. 4619-4629 ◽  
Author(s):  
Taryn M. Stewart ◽  
Ilse Huijskens ◽  
Leslie G. Willis ◽  
David A. Theilmann

ABSTRACT The immediate-early ie0-ie1 gene complex expresses the only baculovirus spliced gene that produces an alternate protein product. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) IE1 is a potent transcriptional transactivator that is essential for viral replication in transient assays. IE1 contains 582 amino acids that are arranged into different domains, including an acidic activation domain at the N terminus, a DNA binding domain, and an oligomerization domain at the C terminus. IE0 is a 52-amino-acid N-terminally elongated form of IE1. We investigated the functions of IE0 and IE1 in virus-infected cells by constructing the first ie1 open reading frame knockout virus. An infectious AcMNPV bacmid was used to generate the ie1 knockout, and the resulting virus, AcBacIE1KO, effectively deletes both ie0 and ie1. AcBacIE1KO does not infect Spodoptera frugiperda cells, showing that the ie0-ie1 gene complex is essential for viral infection. Rescue viruses of AcBacIE1KO were constructed that express only IE1, IE1 and IE0, or only IE0. Our results show that both IE0 and IE1 can function independently, but not equivalently, to support replication, producing infectious virus. Viruses expressing predominately, or only, IE0 produced significantly fewer cells with polyhedra than either the IE1 counterpart or wild-type virus. In addition, DNA replication was prolonged and budded virus and late gene expression were delayed. Viruses expressing only IE1 also produced fewer polyhedra, but replication was slightly faster and achieved higher levels than that of the wild-type virus. Both IE0 and IE1 are therefore required and must be expressed in the correct quantitative ratios to achieve a wild-type infection.


2005 ◽  
Vol 86 (6) ◽  
pp. 1619-1627 ◽  
Author(s):  
Ji-Hong Zhang ◽  
Taro Ohkawa ◽  
Jan O. Washburn ◽  
Loy E. Volkman

Ac150 is expressed late during infection of cultured lepidopteran insect cells by Autographa californica multiple nucleopolyhedrovirus. The Ac150 gene product is predicted to have a molecular mass of 11 161 Da and consists of a hydrophobic N terminus and a single ‘peritrophin-A’-like domain, connected by a short region of charged amino acids. An Ac150 deletion mutant and its parental wild-type virus were compared for differences in virulence by both oral and intrahaemocoelic routes of infection. It was found that the mutant was significantly less virulent in larvae of all three host species tested (Heliothis virescens, Spodoptera exigua and Trichoplusia ni) when occlusions were administered orally, but not when isolated occlusion-derived virus (ODV) was administered orally or budded virus was administered intrahaemocoelically. ODV yields were the same from equal numbers of mutant and wild-type occlusions, and nucleocapsid-distribution frequencies within the two ODV populations were the same, eliminating these features as explanations for the observed differences in virulence. Comparison of pathogenesis, as revealed by lacZ expression from identical reporter-gene cassettes in the mutant and wild-type virus, indicated that the mutant was less efficient at establishing primary infection in midgut cells; otherwise, it exhibited infection kinetics identical to those of wild-type virus. Ac150, therefore, can be considered a per os infection factor that mediates, but is not essential for, oral infection.



2019 ◽  
Vol 32 (7) ◽  
pp. 865-875 ◽  
Author(s):  
Kegui Chen ◽  
Behnam Khatabi ◽  
Vincent N. Fondong

Geminiviruses (family Geminiviridae) are among the most devastating plant viruses worldwide, causing severe damage in crops of economic and subsistence importance. These viruses have very compact genomes and many of the encoded proteins are multifunctional. Here, we investigated the role of the East African cassava mosaic Cameroon virus (EACMCV) AC4 on virus infectivity in Nicotiana benthamiana. Results showed that plants inoculated with EACMCV containing a knockout mutation in an AC4 open reading frame displayed symptoms 2 to 3 days later than plants inoculated with wild-type virus, and these plants recovered from infection, whereas plants inoculated with the wild-type virus did not. Curiously, when an additional mutation was made in the knockout mutant, the resulting double mutant virus completely failed to cause any apparent symptoms. Interestingly, the role of AC4 on virus infectivity appeared to be dependent on an encoded N-myristoylation motif that mediates cell membrane binding. We previously showed that EACMCV containing the AC4T38I mutant produced virus progeny characterized by second-site mutations and reversion to wild-type virus. These results were confirmed in this study using additional mutations. Together, these results show involvement of EACMCV AC4 in virus infectivity; they also suggest a role for the combined action of mutation and selection, under prevailing environmental conditions, on begomovirus genetic variation and diversity.



2007 ◽  
Vol 81 (18) ◽  
pp. 10064-10071 ◽  
Author(s):  
Jean Dahl ◽  
H. Isaac Chen ◽  
Michael George ◽  
Thomas L. Benjamin

ABSTRACT Minichromosomes of wild-type polyomavirus were previously shown to be highly acetylated on histones H3 and H4 compared either to bulk cell chromatin or to viral chromatin of nontransforming hr-t mutants, which are defective in both the small T and middle T antigens. A series of site-directed virus mutants have been used along with antibodies to sites of histone modifications to further investigate the state of viral chromatin and its dependence on the T antigens. Small T but not middle T was important in hyperacetylation at major sites in H3 and H4. Mutants blocked in middle T signaling pathways but encoding normal small T showed a hyperacetylated pattern similar to that of wild-type virus. The hyperacetylation defect of hr-t mutant NG59 was partially complemented by growth of the mutant in cells expressing wild-type small T. In contrast to the hypoacetylated state of NG59, NG59 minichromosomes were hypermethylated at specific lysines in H3 and also showed a higher level of phosphorylation at H3ser10, a modification associated with the late G2 and M phases of the cell cycle. Comparisons of virus growth kinetics and cell cycle progression in wild-type- and NG59-infected cells showed a correlation between the phase of the cell cycle at which virus assembly occurred and histone modifications in the progeny virus. Replication and assembly of wild-type virus were completed largely during S phase. Growth of NG59 was delayed by about 12 h with assembly occurring predominately in G2. These results suggest that small T affects modifications of viral chromatin by altering the temporal coordination of virus growth and the cell cycle.



1998 ◽  
Vol 72 (5) ◽  
pp. 3779-3788 ◽  
Author(s):  
Brandy Salmon ◽  
Charles Cunningham ◽  
Andrew J. Davison ◽  
Wendy J. Harris ◽  
Joel D. Baines

ABSTRACT Previous studies have suggested that the UL17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZexpression cassette in place of 1,490 bp of the 2,109-bp UL17 open reading frame [HSV-1(ΔUL17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5′ end of the UL17 open reading frame [HSV-1(UL17-stop)] were plaque purified on engineered cell lines containing the UL17 gene. A virus derived from HSV-1(UL17-stop) but containing a restored UL17 gene was also constructed and was designated HSV-1(UL17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(ΔUL17) nor HSV-1(UL17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(ΔUL17) compared to wild-type virus show no detectable differences. These data indicate that the UL17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the UL17 gene product, an anti-UL17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent M r 77,000 and weakly with a protein of apparent M r 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted UL17 protein. We therefore conclude that the UL17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.



2001 ◽  
Vol 75 (12) ◽  
pp. 5518-5525 ◽  
Author(s):  
Elisabeth Knapp ◽  
William O. Dawson ◽  
Dennis J. Lewandowski

ABSTRACT Two classes of artificially constructed defective RNAs (dRNAs) ofTobacco mosaic virus (TMV) were examined in planta with helper viruses that expressed one (183 kDa) or both (126 and 183 kDa) of the replicase-associated proteins. The first class of artificially constructed dRNAs had the helicase and polymerase (POL) domains deleted; the second had an intact 126-kDa protein open reading frame (ORF). Despite extremely high levels of replication in protoplasts, the first class of dRNAs did not accumulate in plants. The dRNAs with an intact 126-kDa protein ORF were replicated at moderate levels in protoplasts and in planta when supported by a TMV mutant that expressed the 183-kDa protein but not the 126-kDa protein (183F). These dRNAs were not supported by helper viruses expressing both replicase-associated proteins. De novo dRNAs were generated in plants infected by 183F but not in plants infected with virus with the wild-type replicase. These novel dRNAs each contained a new stop codon near the location of the wild-type stop codon for the 126-kDa protein and had most of the POL domain deleted. The fact that only dRNAs that contained a complete 126-kDa protein ORF moved systemically suggests that expression of a functional 126-kDa protein or the presence of certain sequences and/or structures within this ORF is required for movement of dRNAs. At least two factors may contribute to the lack of naturally occurring dRNAs in association with wild-type TMV infections: an inability of TMV to support dRNAs that can move in plants and the inability of dRNAs that can be replicated by TMV to move in plants.



2002 ◽  
Vol 76 (3) ◽  
pp. 1043-1050 ◽  
Author(s):  
Jill T. Bechtel ◽  
Thomas Shenk

ABSTRACT The human cytomegalovirus UL47 open reading frame encodes a 110-kDa protein that is a component of the virion tegument. We have constructed a cytomegalovirus mutant, ADsubUL47, in which the central portion of the UL47 open reading frame has been replaced by two marker genes. The mutant replicated to titers 100-fold lower than those for wild-type virus after infection at either a high or a low input multiplicity in primary human fibroblasts but was substantially complemented on cells expressing UL47 protein. A revertant virus in which the mutation was repaired, ADrevUL47, replicated with wild-type kinetics. Mutant virions lacked UL47 protein and contained reduced amounts of UL48 protein. The mutant was found to be less infectious than wild-type virus, and a defect very early in the replication cycle was observed. Transcription of the viral immediate-early 1 gene was delayed by 8 to 10 h. However, this delay was not the result of a defect in virus entry or of the inability of virion proteins to transactivate the major immediate-early promoter. We also show that the UL47 protein coprecipitated with the UL48 and UL69 tegument proteins and the UL86-encoded major capsid protein. We propose that a UL47-containing complex is involved in the release of viral DNA from the disassembling virus particle and that the loss of UL47 protein causes this process to be delayed.



2008 ◽  
Vol 82 (19) ◽  
pp. 9433-9444 ◽  
Author(s):  
Ritesh Tandon ◽  
Edward S. Mocarski

ABSTRACT Cytomegalovirus replication depends upon a betaherpesvirus-conserved 150-kDa tegument phosphoprotein (pp150; encoded by UL32) that supports the final steps in virion maturation at cytoplasmic assembly compartments. Amino acid substitutions were introduced into conserved region 1 (CR1) and CR2 of pp150, affecting a region that may interact with nucleocapsids. Two independent CR2 point mutants (N201A and G207A) failed to support viral replication in evaluations by a transient complementation assay or after reconstruction into recombinant viruses. An assembly compartment-like cytoplasmic inclusion developed in UL32 mutant virus-infected cells that was similar to that of wild-type virus-infected cells. The cellular localization of the trans-Golgi marker Golgin-97 suggested differences in the organization of the assembly compartment compared to that of wild-type virus-infected cells. Replication-defective CR2 point mutants exhibited the same phenotype as that of a virus carrying a complete deletion of the UL32 open reading frame in these assays. Electron micrographs of fibroblasts at 3 or 5 days postinfection with a deletion mutant (ΔUL32) grown on UL32-complementing cells showed a similar number and morphology of capsids in the nucleus, but the cytoplasmic region associated with virion assembly appeared highly vesiculated and contained few recognizable nucleocapsids or complete virus particles. These data demonstrate that the principle role of pp150 is to retain nucleocapsid organization through secondary envelopment at the assembly compartment.



2000 ◽  
Vol 74 (20) ◽  
pp. 9488-9497 ◽  
Author(s):  
Jianqiao Xiao ◽  
Tuong Tong ◽  
Xiaoyan Zhan ◽  
Erik Haghjoo ◽  
Fenyong Liu

ABSTRACT We have recently generated a pool of murine cytomegalovirus (MCMV) mutants by using a Tn3-based transposon mutagenesis approach. In this study, one of the MCMV mutants, RvM43, which contained the transposon inserted in open reading frame M43, was characterized. Our results provide the first direct evidence to suggest that M43 is not essential for viral replication in vitro in NIH 3T3 cells. Moreover, RvM43 exhibited a titer similar to that of the wild-type virus in the lungs, livers, spleens, and kidneys of both BALB/c and SCID mice and was as virulent as the wild-type virus in killing SCID mice that had been intraperitoneally infected with the viruses. In contrast, titers of the mutant virus in the salivary glands of the infected animals at 21 days postinfection were significantly (100 to 1,000-fold) lower than those of the wild-type virus and a rescued virus that restored the M43 region and its expression. Thus, M43 appears to be not essential for viral growth in vivo in the lungs, livers, spleens, and kidneys of infected animals and is also dispensable for virulence in killing SCID mice. Moreover, our results suggest that M43 is an MCMV determinant for growth in the salivary glands. Studies of viral genes required for replication in the salivary glands are important in understanding the mechanism of viral tropism for the salivary glands and shedding in saliva, which is believed to be one of the major routes of CMV transmission among healthy human populations.



2001 ◽  
Vol 75 (20) ◽  
pp. 9623-9632 ◽  
Author(s):  
Irmgard Pult ◽  
Nathan Abbott ◽  
Yong-Yuan Zhang ◽  
Jesse Summers

ABSTRACT In this study, we measured the frequency of revertants of a cytopathic strain of the duck hepatitis B virus that bears a single nucleotide substitution in the pre-S envelope protein open reading frame, resulting in the amino acid substitution G133E. Cytopathic virus mixed with known amounts of a genetically marked wild-type virus was injected into ducklings. Virus outgrowth was accompanied by a coselection of wild-type and spontaneous revertants during recovery of the ducklings from the acute liver injury caused by death of the G133E-infected cells. The frequency of individual revertants in the selected noncytopathic virus population was estimated by determining the ratio of each revertant to the wild-type virus. Spontaneous revertants were found to be present at frequencies of 1 × 10−5 to 6 × 10−5 per G133E genome inoculated. A mathematical model was used to estimate that the mutation rate was 0.8 × 10−5 to 4.5 × 10−5per nucleotide per generation.



2000 ◽  
Vol 74 (15) ◽  
pp. 7016-7023 ◽  
Author(s):  
Ann T. Hoge ◽  
Sara B. Hendrickson ◽  
William H. Burns

ABSTRACT Murine gammaherpesvirus 68 (MHV68) is a gammaherpesvirus that was first isolated from murid rodents. MHV68 establishes a latent infection in the spleen and other lymphoid organs. Several gammaherpesviruses, including herpesvirus saimiri, human herpesvirus 8, and MHV68, encode proteins with extensive homology to the D-type cyclins. To study the function of the cyclin homologue, a recombinant MHV68 has been constructed that lacks the cyclin homologue and expresses β-galactosidase as a marker (MHV68cy−). MHV68cy− grows in vitro with kinetics and to titers similar to those of the wild type. BALB/c mice infected with mixtures of equivalent amounts of the wild type and MHV68cy− show deficient growth of the MHV68cy− in an acute infection. Infection of SCID mice with virus mixtures also showed decreased MHV68cy−virus growth, indicating that the deficiency is not mediated by T or B cells. Although mice infected with mixtures containing 100 times as much MHV68cy− had greater splenic titers of the mutant virus than wild-type virus in acute infection, at 28 days postinfection splenocytes from these mice reactivated primarily wild-type virus. Quantitative PCR data indicate that equivalent genomes were present in the latent state. Reinsertion of the cyclin homologue into the cyclin-deleted virus restored the wild-type phenotype. These results indicate that the MHV68 cyclin D homologue mediates important functions in the acute infection and is required for efficient reactivation from latency.



Sign in / Sign up

Export Citation Format

Share Document