scholarly journals The AC4 Protein of a Cassava Geminivirus Is Required for Virus Infection

2019 ◽  
Vol 32 (7) ◽  
pp. 865-875 ◽  
Author(s):  
Kegui Chen ◽  
Behnam Khatabi ◽  
Vincent N. Fondong

Geminiviruses (family Geminiviridae) are among the most devastating plant viruses worldwide, causing severe damage in crops of economic and subsistence importance. These viruses have very compact genomes and many of the encoded proteins are multifunctional. Here, we investigated the role of the East African cassava mosaic Cameroon virus (EACMCV) AC4 on virus infectivity in Nicotiana benthamiana. Results showed that plants inoculated with EACMCV containing a knockout mutation in an AC4 open reading frame displayed symptoms 2 to 3 days later than plants inoculated with wild-type virus, and these plants recovered from infection, whereas plants inoculated with the wild-type virus did not. Curiously, when an additional mutation was made in the knockout mutant, the resulting double mutant virus completely failed to cause any apparent symptoms. Interestingly, the role of AC4 on virus infectivity appeared to be dependent on an encoded N-myristoylation motif that mediates cell membrane binding. We previously showed that EACMCV containing the AC4T38I mutant produced virus progeny characterized by second-site mutations and reversion to wild-type virus. These results were confirmed in this study using additional mutations. Together, these results show involvement of EACMCV AC4 in virus infectivity; they also suggest a role for the combined action of mutation and selection, under prevailing environmental conditions, on begomovirus genetic variation and diversity.


2006 ◽  
Vol 80 (13) ◽  
pp. 6387-6398 ◽  
Author(s):  
L. M. Olsen ◽  
T. H. Ch'ng ◽  
J. P. Card ◽  
L. W. Enquist

ABSTRACT The pseudorabies virus (PRV) Us3 gene is conserved among the alphaherpesviruses and encodes a serine/threonine protein kinase that is not required for growth in standard cell lines. In this report, we used a compartmented culture system to investigate the role of PRV Us3 in viral replication in neurons, in spread from neurons to PK15 cells, and in axon-mediated spread of infection. We also examined the role of Us3 in neuroinvasion and virulence in rodents. Us3 null mutants produce about 10-fold less infectious virus from neurons than wild-type virus and have no discernible phenotypes for axonal targeting of viral components in cultured peripheral nervous system neurons. After eye infection in rodents, Us3 null mutants were slightly attenuated for virulence, with a delayed onset of symptoms compared to the wild type or a Us3 null revertant. While initially delayed, the symptoms increased in severity until they approximated those of the wild-type virus. Us3 null mutants were neuroinvasive, spreading in both efferent and afferent circuits innervating eye tissues.



2017 ◽  
pp. JVI.01972-17 ◽  
Author(s):  
Wen-Chi Su ◽  
Wen-Ya Yu ◽  
Shih-Han Huang ◽  
Michael M.C. Lai

Virus replication is mediated by interactions between virus and host. Here, we demonstrate that influenza A virus membrane protein 2 (M2) can be ubiquitinated. The lysine residue at position 78, which is located in the cytoplasmic domain of M2, is essential for M2 ubiquitination. An M2-K78R (Lys78→Arg78) mutant, which produces ubiquitination-deficient M2, showed a severe defect in production of infectious virus particles. M2-K78R mutant progeny contained more HA proteins, less viral RNAs and less internal viral proteins, including M1 and NP, than the wild-type virus. Furthermore, most of the M2-K78R mutant viral particles lacked viral ribonucleoproteins upon examination under electron microscopy and exhibited slightly lower densities. We also found that mutant M2 colocalized with M1 protein to a lesser extent than for wild-type virus. These findings may account for the reduced incorporation of viral ribonucleoprotein into virions. By blocking the second round of virus infection, we showed that the M2 ubiquitination-defective mutant exhibited normal level of virus replication during the first round of infection, thereby proving that M2 ubiquitination is involved in the virus production step. Finally, we found that M2-K78R mutant virus induced autophagy and apoptosis earlier than wild-type virus. Collectively, these results suggest that M2 ubiquitination plays an important role in infectious virus production by coordinating efficient packaging of the viral genome into virus particles and timing of viral-induced cell death.IMPORTANCEAnnual epidemics and recurring pandemics of influenza viruses represent a very high global health and economic burden. Influenza virus M2 protein has been extensively studied for its important roles in virus replication, particularly in viral entry and release. Rimantadine, one of the most commonly used antiviral drugs, binds to the channel lumen near the N-terminus of M2 proteins. However, viruses resistant to Rimantadine have emerged. M2 undergoes several posttranslational modifications, such as phosphorylation and palmitoylation. Here, we reveal that ubiquitination mediates the functional role of M2. A ubiquitination-deficient M2 mutant predominately produced virus particles either lacking viral ribonucleoproteins or containing smaller amounts of internal viral components, resulting in lower infectivity. Our findings offer insights into the mechanism of influenza virus morphogenesis, particularly the functional role of M1-M2 interactions in viral particle assembly, and can be applied to the development of new influenza therapies.



2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Yu Zhang ◽  
Nozomi Kuse ◽  
Tomohiro Akahoshi ◽  
Takayuki Chikata ◽  
Hiroyuki Gatanaga ◽  
...  

ABSTRACT The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.



1998 ◽  
Vol 72 (5) ◽  
pp. 3779-3788 ◽  
Author(s):  
Brandy Salmon ◽  
Charles Cunningham ◽  
Andrew J. Davison ◽  
Wendy J. Harris ◽  
Joel D. Baines

ABSTRACT Previous studies have suggested that the UL17 gene of herpes simplex virus type 1 (HSV-1) is essential for virus replication. In this study, viral mutants incorporating either a lacZexpression cassette in place of 1,490 bp of the 2,109-bp UL17 open reading frame [HSV-1(ΔUL17)] or a DNA oligomer containing an in-frame stop codon inserted 778 bp from the 5′ end of the UL17 open reading frame [HSV-1(UL17-stop)] were plaque purified on engineered cell lines containing the UL17 gene. A virus derived from HSV-1(UL17-stop) but containing a restored UL17 gene was also constructed and was designated HSV-1(UL17-restored). The latter virus formed plaques and cleaved genomic viral DNA in a manner indistinguishable from wild-type virus. Neither HSV-1(ΔUL17) nor HSV-1(UL17-stop) formed plaques or produced infectious progeny when propagated on noncomplementing Vero cells. Furthermore, genomic end-specific restriction fragments were not detected in DNA purified from noncomplementing cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop), whereas end-specific fragments were readily detected when the viruses were propagated on complementing cells. Electron micrographs of thin sections of cells infected with HSV-1(ΔUL17) or HSV-1(UL17-stop) illustrated that empty capsids accumulated in the nuclei of Vero cells, whereas DNA-containing capsids accumulated in the nuclei of complementing cells and enveloped virions were found in the cytoplasm and extracellular space. Additionally, protein profiles of capsids purified from cells infected with HSV-1(ΔUL17) compared to wild-type virus show no detectable differences. These data indicate that the UL17 gene is essential for virus replication and is required for cleavage and packaging of viral DNA. To characterize the UL17 gene product, an anti-UL17 rabbit polyclonal antiserum was produced. The antiserum reacted strongly with a major protein of apparent M r 77,000 and weakly with a protein of apparent M r 72,000 in wild-type infected cell lysates and in virions. Bands of similar sizes were also detected in electrophoretically separated tegument fractions of virions and light particles and yielded tryptic peptides of masses characteristic of the predicted UL17 protein. We therefore conclude that the UL17 gene products are associated with the virion tegument and note that they are the first tegument-associated proteins shown to be required for cleavage and packaging of viral DNA.



2000 ◽  
Vol 74 (19) ◽  
pp. 9333-9337 ◽  
Author(s):  
Kirsten Lofgren White ◽  
Barry Slobedman ◽  
Edward S. Mocarski

ABSTRACT Human cytomegalovirus latency in bone marrow-derived myeloid progenitors is characterized by the presence of latency-associated transcripts encoded in the ie1/ie2 region of the viral genome. To assess the role of ORF94 (UL126a), a conserved open reading frame on these transcripts, a recombinant virus (RC2710) unable to express this gene was constructed. This virus replicated at wild-type levels and expressed productive as well as latency-associatedie1/ie2 region transcripts. During latency in granulocyte-macrophage progenitors, RC2710 DNA was detected at levels indistinguishable from wild-type virus, latent-phase transcription was present, and RC2710 reactivated when latently infected cells were cocultured with permissive fibroblasts. These data suggest pORF94 is not required for either productive or latent infection as assayed in cultured cells despite being the only known nuclear latency-associated protein.



2005 ◽  
Vol 79 (20) ◽  
pp. 12961-12968 ◽  
Author(s):  
Amy N. Loveland ◽  
Chee-Kai Chan ◽  
Edward J. Brignole ◽  
Wade Gibson

ABSTRACT The cytomegalovirus (CMV) maturational protease, assemblin, contains an “internal” (I) cleavage site absent from its homologs in other herpesviruses. Blocking this site for cleavage did not prevent replication of the resulting I− mutant virus. However, cells infected with the I− virus showed increased amounts of a fragment produced by cleavage at the nearby “cryptic” (C) site, suggesting that its replication may bypass the I-site block by using the C site as an alternate cleavage pathway. To test this and further examine the biological importance of these cleavages, we constructed two additional virus mutants—one blocked for C-site cleavage and another blocked for both I- and C-site cleavage. Infectivity comparisons with the parental wild-type virus showed that the I− mutant was the least affected for virus production, whereas infectivity of the C− mutant was reduced by ≈40% and when both sites were blocked virus infectivity was reduced by nearly 90%, providing the first evidence that these cleavages have biological significance. We also present and discuss evidence suggesting that I-site cleavage destabilizes assemblin and its fragments, whereas C-site cleavage does not.



2005 ◽  
Vol 79 (8) ◽  
pp. 4619-4629 ◽  
Author(s):  
Taryn M. Stewart ◽  
Ilse Huijskens ◽  
Leslie G. Willis ◽  
David A. Theilmann

ABSTRACT The immediate-early ie0-ie1 gene complex expresses the only baculovirus spliced gene that produces an alternate protein product. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) IE1 is a potent transcriptional transactivator that is essential for viral replication in transient assays. IE1 contains 582 amino acids that are arranged into different domains, including an acidic activation domain at the N terminus, a DNA binding domain, and an oligomerization domain at the C terminus. IE0 is a 52-amino-acid N-terminally elongated form of IE1. We investigated the functions of IE0 and IE1 in virus-infected cells by constructing the first ie1 open reading frame knockout virus. An infectious AcMNPV bacmid was used to generate the ie1 knockout, and the resulting virus, AcBacIE1KO, effectively deletes both ie0 and ie1. AcBacIE1KO does not infect Spodoptera frugiperda cells, showing that the ie0-ie1 gene complex is essential for viral infection. Rescue viruses of AcBacIE1KO were constructed that express only IE1, IE1 and IE0, or only IE0. Our results show that both IE0 and IE1 can function independently, but not equivalently, to support replication, producing infectious virus. Viruses expressing predominately, or only, IE0 produced significantly fewer cells with polyhedra than either the IE1 counterpart or wild-type virus. In addition, DNA replication was prolonged and budded virus and late gene expression were delayed. Viruses expressing only IE1 also produced fewer polyhedra, but replication was slightly faster and achieved higher levels than that of the wild-type virus. Both IE0 and IE1 are therefore required and must be expressed in the correct quantitative ratios to achieve a wild-type infection.



2002 ◽  
Vol 76 (23) ◽  
pp. 12032-12043 ◽  
Author(s):  
Linda A. Guarino ◽  
Toni-Ann Mistretta ◽  
Wen Dong

ABSTRACT The baculovirus lef-12 (orf41) gene is required for transient expression of baculovirus late genes. To analyze the role of LEF-12 in the context of infected cells, two mutant viruses were constructed. Both mutants were viable in Trichoplusia ni High 5 and Spodoptera frugiperda Sf9 cells. Single-step growth curves, however, indicated that virus yields were reduced approximately fivefold in the absence of LEF-12. Pulse-labeling of infected cells revealed that LEF-12 mutant viruses entered the late phase and synthesized late proteins at levels equivalent to or only twofold lower than those of wild-type virus-infected cells. Western blot analyses confirmed that LEF-12 was not synthesized in cells infected with mutant virus. In wild-type virus-infected cells, LEF-12 was not detected until 18 h postinfection, and accumulation of LEF-12 peaked at 24 to 36 h postinfection. Primer extension mapping revealed that lef-12 mRNA was synthesized by 12 h postinfection and peaked between 18 and 24 h postinfection. Furthermore, synthesis of lef-12 mRNA and LEF-12 protein were inhibited by the addition of aphidicolin, indicating that lef-12 is expressed after DNA replication.



2001 ◽  
Vol 75 (12) ◽  
pp. 5518-5525 ◽  
Author(s):  
Elisabeth Knapp ◽  
William O. Dawson ◽  
Dennis J. Lewandowski

ABSTRACT Two classes of artificially constructed defective RNAs (dRNAs) ofTobacco mosaic virus (TMV) were examined in planta with helper viruses that expressed one (183 kDa) or both (126 and 183 kDa) of the replicase-associated proteins. The first class of artificially constructed dRNAs had the helicase and polymerase (POL) domains deleted; the second had an intact 126-kDa protein open reading frame (ORF). Despite extremely high levels of replication in protoplasts, the first class of dRNAs did not accumulate in plants. The dRNAs with an intact 126-kDa protein ORF were replicated at moderate levels in protoplasts and in planta when supported by a TMV mutant that expressed the 183-kDa protein but not the 126-kDa protein (183F). These dRNAs were not supported by helper viruses expressing both replicase-associated proteins. De novo dRNAs were generated in plants infected by 183F but not in plants infected with virus with the wild-type replicase. These novel dRNAs each contained a new stop codon near the location of the wild-type stop codon for the 126-kDa protein and had most of the POL domain deleted. The fact that only dRNAs that contained a complete 126-kDa protein ORF moved systemically suggests that expression of a functional 126-kDa protein or the presence of certain sequences and/or structures within this ORF is required for movement of dRNAs. At least two factors may contribute to the lack of naturally occurring dRNAs in association with wild-type TMV infections: an inability of TMV to support dRNAs that can move in plants and the inability of dRNAs that can be replicated by TMV to move in plants.



Sign in / Sign up

Export Citation Format

Share Document