scholarly journals Viral RNA Is Required for the Association of APOBEC3G with Human Immunodeficiency Virus Type 1 Nucleoprotein Complexes

2005 ◽  
Vol 79 (9) ◽  
pp. 5870-5874 ◽  
Author(s):  
Mohammad A. Khan ◽  
Sandra Kao ◽  
Eri Miyagi ◽  
Hiroaki Takeuchi ◽  
Ritu Goila-Gaur ◽  
...  

ABSTRACT APOBEC3G (APO3G) is a host cytidine deaminase that is incorporated into human immunodeficiency virus type 1 (HIV-1) particles. We report here that viral RNA promotes stable association of APO3G with HIV-1 nucleoprotein complexes (NPC). A target sequence located within the 5′-untranslated region of the HIV-1 RNA was identified to be necessary and sufficient for efficient APO3G packaging. Fine mapping revealed a sequence normally involved in viral genomic RNA dimerization and Gag binding to be important for APO3G packaging and association with viral NPC. Our data suggest that packaging of APO3G into HIV-1 NPC is enhanced by viral RNA.

2008 ◽  
Vol 82 (20) ◽  
pp. 9928-9936 ◽  
Author(s):  
Koichi Watashi ◽  
Mohammad Khan ◽  
Venkat R. K. Yedavalli ◽  
Man Lung Yeung ◽  
Klaus Strebel ◽  
...  

ABSTRACT APOBEC3G (A3G) is a cytidine deaminase that restricts human immunodeficiency virus type 1 (HIV-1) replication. HIV-1 synthesizes a viral infectivity factor (Vif) to counter A3G restriction. Currently, it is poorly understood how A3G expression/activity is regulated by cellular factors. Here, we show that the prolyl isomerase Pin1 protein modulates A3G expression. Pin1 was found to be an A3G-interacting protein that reduces A3G expression and its incorporation into HIV-1 virion, thereby limiting A3G-mediated restriction of HIV-1. Intriguingly, HIV-1 infection modulates the phosphorylation state of Pin1, enhancing its ability to moderate A3G activity. These new findings suggest a potential Vif-independent way for HIV-1 to moderate the cellular action of A3G.


2004 ◽  
Vol 78 (5) ◽  
pp. 2601-2605 ◽  
Author(s):  
Atze T. Das ◽  
Thijn R. Brummelkamp ◽  
Ellen M. Westerhout ◽  
Monique Vink ◽  
Mandy Madiredjo ◽  
...  

ABSTRACT Short-term assays have suggested that RNA interference (RNAi) may be a powerful new method for intracellular immunization against human immunodeficiency virus type 1 (HIV-1) infection. However, RNAi has not yet been shown to protect cells against HIV-1 in long-term virus replication assays. We stably introduced vectors expressing small interfering RNAs (siRNAs) directed against the HIV-1 genome into human T cells by retroviral transduction. We report here that an siRNA directed against the viral Nef gene (siRNA-Nef) confers resistance to HIV-1 replication. This block in replication is not absolute, and HIV-1 escape variants that were no longer inhibited by siRNA-Nef appeared after several weeks of culture. These RNAi-resistant viruses contained nucleotide substitutions or deletions in the Nef gene that modified or deleted the siRNA-Nef target sequence. These results demonstrate that efficient inhibition of HIV-1 replication through RNAi is possible in stably transduced cells. Therefore, RNAi could become a realistic gene therapy approach with which to overcome the devastating effect of HIV-1 on the immune system. However, as is known for antiviral drug therapy against HIV-1, antiviral approaches involving RNAi should be used in a combined fashion to prevent the emergence of resistant viruses.


2002 ◽  
Vol 76 (3) ◽  
pp. 959-967 ◽  
Author(s):  
Jun-ichi Sakuragi ◽  
Aikichi Iwamoto ◽  
Tatsuo Shioda

ABSTRACT The dimer initiation site/dimer linkage sequence (DIS/DLS) region of the human immunodeficiency virus type 1 (HIV-1) RNA genome is thought to play important roles at various stages of the virus life cycle. Recently we showed that the DIS/DLS region affects RNA-RNA interaction in intact virus particles, by demonstrating that duplication of the region in viral RNA caused the production of virus particles containing partially monomeric RNAs. We have extended this finding and succeeded for the first time in creating mutant particles which contain only monomeric RNAs without modifying any viral proteins. In terms of RNA encapsidation ability, virion density, and protein processing, the mutant particles were comparable to wild-type particles. The level of production of viral DNA by the mutant virus construct in infected cells was also comparable to that of the constructs that produced exclusively dimeric RNA, indicating that monomeric viral RNA could be the template for strand transfer. These results indicated that the RNA dimerization of HIV-1 could be separated from viral RNA packaging and was not absolutely required for RNA packaging, virion maturation, and reverse transcription.


2003 ◽  
Vol 77 (15) ◽  
pp. 8237-8248 ◽  
Author(s):  
David R. M. Graham ◽  
Elena Chertova ◽  
Joanne M. Hilburn ◽  
Larry O. Arthur ◽  
James E. K. Hildreth

ABSTRACT Recent evidence suggests that human immunodeficiency virus type 1 (HIV-1) particles assemble and bud selectively through areas in the plasma membrane of cells that are highly enriched with glycosylphosphatidylinositol-anchored proteins and cholesterol, called lipid rafts. Since cholesterol is required to maintain lipid raft structure and function, we proposed that virion-associated cholesterol removal with the compound 2-hydroxy-propyl-β-cyclodextrin (β-CD) might be disruptive to HIV-1 and simian immunodeficiency virus (SIV). We examined the effect of β-CD on the structure and infectivity of cell-free virions. We found that β-CD inactivated HIV-1 and SIV in a dose-dependent manner and permeabilized the viral membranes, resulting in the loss of mature Gag proteins (capsid, matrix, nucleocapsid, p1, and p6) without loss of the envelope glycoproteins. SIV also lost reverse transcriptase (RT), integrase (IN), and viral RNA. IN appeared to be only slightly diminished in HIV-1, and viral RNA, RT, matrix, and nucleocapsid proteins were retained in HIV-1 but to a much lesser degree. Host proteins located internally in the virus (actin, moesin, and ezrin) and membrane-associated host proteins (major histocompatibility complex classes I and II) remained associated with the treated virions. Electron microscopy revealed that under conditions that permeabilized the viruses, holes were present in the viral membranes and the viral core structure was perturbed. These data provide evidence that an intact viral membrane is required to maintain mature virion core integrity. Since the viruses were not fixed before β-CD treatment and intact virion particles were recovered, the data suggest that virions may possess a protein scaffold that can maintain overall structure despite disruptions in membrane integrity.


1998 ◽  
Vol 72 (4) ◽  
pp. 2935-2944 ◽  
Author(s):  
Sarah L. Thomas ◽  
Martin Oft ◽  
Herbert Jaksche ◽  
Georg Casari ◽  
Peter Heger ◽  
...  

ABSTRACT The expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the action of the viraltrans-regulatory protein Rev. Rev is a nuclear shuttle protein that directly binds to its cis-acting Rev response element (RRE) RNA target sequence. Subsequent oligomerization of Rev monomers on the RRE and interaction of Rev with a cellular cofactor(s) result in the cytoplasmic accumulation of RRE-containing viral mRNAs. Moreover, Rev by itself is exported from the nucleus to the cytoplasm. Although it has been demonstrated that Rev multimerization is critically required for Rev activity and hence for HIV-1 replication, the number of Rev monomers required to form atrans-activation-competent complex on the RRE is unknown. Here we report a systematic analysis of the putative multimerization domains within the Rev trans-activator protein. We identify the amino acid residues which are part of the proposed single hydrophobic surface patch in the Rev amino terminus that mediates intermolecular interactions. Furthermore, we show that the expression of a multimerization-deficient Rev mutant blocks HIV-1 replication in a trans-dominant (dominant-negative) fashion.


2000 ◽  
Vol 74 (10) ◽  
pp. 4621-4633 ◽  
Author(s):  
Shizuko Sei ◽  
Quan-en Yang ◽  
Dennis O'Neill ◽  
Kazuhisa Yoshimura ◽  
Kunio Nagashima ◽  
...  

ABSTRACT Although the full sequence of the human immunodeficiency virus type 1 (HIV-1) genome has been known for more than a decade, effective genetic antivirals have yet to be developed. Here we show that, of 22 regions examined, one highly conserved sequence (ACTCTTTGGCAACGA) near the 3′ end of the HIV-1 gag-poltransframe region, encoding viral protease residues 4 to 8 and a C-terminal Vpr-binding motif of p6Gag protein in two different reading frames, can be successfully targeted by an antisense peptide nucleic acid oligomer named PNAPR2. A disrupted translation of gag-pol mRNA induced at the PNAPR2-annealing site resulted in a decreased synthesis of Pr160Gag-Pol polyprotein, hence the viral protease, a predominant expression of Pr55Gag devoid of a fully functional p6Gag protein, and the excessive intracellular cleavage of Gag precursor proteins, hindering the processes of virion assembly. Treatment with PNAPR2abolished virion production by up to 99% in chronically HIV-1-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates with the multidrug-resistant phenotype. This particular segment of the gag-pol transframe gene appears to offer a distinctive advantage over other regions in invading viral structural genes and restraining HIV-1 replication in infected cells and may potentially be exploited as a novel antiviral genetic target.


2006 ◽  
Vol 80 (2) ◽  
pp. 571-577 ◽  
Author(s):  
Rosario Sabariegos ◽  
Mireia Giménez-Barcons ◽  
Natalia Tàpia ◽  
Bonaventura Clotet ◽  
Miguel Angel Martínez

ABSTRACT Short interfering RNAs (siRNAs) targeting viral or cellular genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, the emergence of mutations in the gene being targeted could lead to the rapid escape from the siRNA. Here, we simulate viral escape by systematically introducing single-nucleotide substitutions in all 19 HIV-1 residues targeted by an effective siRNA. We found that all mutant viruses that were tested replicated better in the presence of the siRNA than in the presence of the wild-type virus. The antiviral activity of the siRNA was completely abolished by single substitutions in 10 (positions 4 to 11, 14, and 15) out of 16 positions tested (substitution at 3 of the 19 positions explored rendered nonviable viruses). With the exception of the substitution observed at position 12, substitutions at either the 5′ end or the 3′ end (positions 1 to 3, 16, and 18) were better tolerated by the RNA interference machinery and only in part affected siRNA inhibition. Our results show that optimal HIV-1 gene silencing by siRNA requires a complete homology within most of the target sequence and that substitutions at only a few positions at the 5′ and 3′ ends are partially tolerated.


2014 ◽  
Vol 89 (4) ◽  
pp. 2415-2424 ◽  
Author(s):  
John P. Donahue ◽  
Rebecca T. Levinson ◽  
Jonathan H. Sheehan ◽  
Lorraine Sutton ◽  
Harry E. Taylor ◽  
...  

ABSTRACTMembers of the APOBEC3 family of cytidine deaminases vary in their proportions of a virion-incorporated enzyme that is localized to mature retrovirus cores. We reported previously that APOBEC3F (A3F) was highly localized into mature human immunodeficiency virus type 1 (HIV-1) cores and identified that L306 in the C-terminal cytidine deaminase (CD) domain contributed to its core localization (C. Song, L. Sutton, M. Johnson, R. D'Aquila, J. Donahue, J Biol Chem287:16965–16974, 2012,http://dx.doi.org/10.1074/jbc.M111.310839). We have now determined an additional genetic determinant(s) for A3F localization to HIV-1 cores. We found that one pair of leucines in each of A3F's C-terminal and N-terminal CD domains jointly determined the degree of localization of A3F into HIV-1 virion cores. These are A3F L306/L368 (C-terminal domain) and A3F L122/L184 (N-terminal domain). Alterations to one of these specific leucine residues in either of the two A3F CD domains (A3F L368A, L122A, and L184A) decreased core localization and diminished HIV restriction without changing virion packaging. Furthermore, double mutants in these leucine residues in each of A3F's two CD domains (A3F L368A plus L184A or A3F L368A plus L122A) still were packaged into virions but completely lost core localization and anti-HIV activity. HIV virion core localization of A3F is genetically separable from its virion packaging, and anti-HIV activity requires some core localization.IMPORTANCESpecific leucine-leucine interactions are identified as necessary for A3F's core localization and anti-HIV activity but not for its packaging into virions. Understanding these signals may lead to novel strategies to enhance core localization that may augment effects of A3F against HIV and perhaps of other A3s against retroviruses, parvoviruses, and hepatitis B virus.


2007 ◽  
Vol 82 (6) ◽  
pp. 2895-2903 ◽  
Author(s):  
Karin Jasmijn von Eije ◽  
Olivier ter Brake ◽  
Ben Berkhout

ABSTRACT RNA interference (RNAi) is a cellular mechanism in which small interfering RNAs (siRNAs) mediate sequence-specific gene silencing by cleaving the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1) through stable expression of short-hairpin RNAs (shRNAs). We previously reported efficient HIV-1 inhibition by an shRNA against the nonessential nef gene but also described viral escape by mutation or deletion of the nef target sequence. The objective of this study was to obtain insight in the viral escape routes when essential and highly conserved sequences are targeted in the Gag, protease, integrase, and Tat-Rev regions of HIV-1. Target sequences were analyzed of more than 500 escape viruses that were selected in T cells expressing individual shRNAs. Viruses acquired single point mutations, occasionally secondary mutations, but—in contrast to what is observed with nef—no deletions were detected. Mutations occurred predominantly at target positions 6, 8, 9, 14, and 15, whereas none were selected at positions 1, 2, 5, 18, and 19. We also analyzed the type of mismatch in the siRNA-target RNA duplex, and G-U base pairs were frequently selected. These results provide insight into the sequence requirements for optimal RNAi inhibition. This knowledge on RNAi escape may guide the design and selection of shRNAs for the development of an effective RNAi therapy for HIV-1 infections.


2007 ◽  
Vol 82 (2) ◽  
pp. 987-998 ◽  
Author(s):  
Mariana Marin ◽  
Sheetal Golem ◽  
Kristine M. Rose ◽  
Susan L. Kozak ◽  
David Kabat

ABSTRACT VifIIIB, which has been a standard model for the viral infectivity factor of human immunodeficiency virus type 1 (HIV-1), binds the cytidine deaminase APOBEC3G (A3G) and induces its degradation, thereby precluding its lethal incorporation into assembling virions. Additionally, VifIIIB less efficiently degrades A3F, another potent anti-HIV-1 cytidine deaminase. Although the APOBEC3 paralogs A3A, A3B, and A3C have weaker anti-HIV-1 activities and are only partially degraded by VifIIIB, we found that VifIIIB induces their emigration from the nucleus to the cytosol and thereby causes net increases in the cytosolic concentrations and anti-HIV-1 activities of A3A and A3B. In contrast, some other Vifs, exemplified by VifHXB2 and VifELI-1, much more efficiently degrade and thereby neutralize all APOBEC3s. Studies focused mainly on A3F imply that it occurs associated with mRNA-PABP1 in translationally active polysomes and to a lesser extent in mRNA processing bodies (P-bodies). A3F appears to stabilize the P-bodies with which it is associated. A correspondingly small proportion of VifIIIB also localizes in P-bodies in an A3F-dependent manner. Stress causes A3A, A3B, A3C, and A3F to colocalize efficiently with VifIIIB and mRNA-PABP1 complexes in stress granules in a manner that is prevented by cycloheximide, an inhibitor of translational elongation. Coimmunoprecipitation studies suggest that Vifs from different HIV-1 isolates associate with all tested APOBEC3s. Thus, Vifs interact closely with structurally diverse APOBEC3s, with effects on their subcellular localization, degradation rates, and antiviral activities. Cytosolic APOBEC3-Vif complexes are predominantly bound to mRNAs that dynamically move between translationally active and storage or processing pools.


Sign in / Sign up

Export Citation Format

Share Document