scholarly journals Initial Stage of Transformation of Permissive Cells by Simian Virus 40: Development of Resistance to Productive Infection

1971 ◽  
Vol 8 (1) ◽  
pp. 7-16 ◽  
Author(s):  
E. C. Hahn ◽  
G. Sauer
2010 ◽  
Vol 84 (16) ◽  
pp. 8007-8020 ◽  
Author(s):  
Sergei Boichuk ◽  
Liang Hu ◽  
Jennifer Hein ◽  
Ole V. Gjoerup

ABSTRACT We demonstrated previously that expression of simian virus 40 (SV40) large T antigen (LT), without a viral origin, is sufficient to induce the hallmarks of a cellular DNA damage response (DDR), such as focal accumulation of γ-H2AX and 53BP1, via Bub1 binding. Here we expand our characterization of LT effects on the DDR. Using comet assays, we demonstrate that LT induces overt DNA damage. The Fanconi anemia pathway, associated with replication stress, becomes activated, since FancD2 accumulates in foci, and monoubiquitinated FancD2 is detected on chromatin. LT also induces a distinct set of foci of the homologous recombination repair protein Rad51 that are colocalized with Nbs1 and PML. The FancD2 and Rad51 foci require neither Bub1 nor retinoblastoma protein binding. Strikingly, wild-type LT is localized on chromatin at, or near, the Rad51/PML foci, but the LT mutant in Bub1 binding is not localized there. SV40 infection was previously shown to trigger ATM activation, which facilitates viral replication. We demonstrate that productive infection also triggers ATR-dependent Chk1 activation and that Rad51 and FancD2 colocalize with LT in viral replication centers. Using small interfering RNA (siRNA)-mediated knockdown, we demonstrate that Rad51 and, to a lesser extent, FancD2 are required for efficient viral replication in vivo, suggesting that homologous recombination is important for high-level extrachromosomal replication. Taken together, the interplay of LT with the DDR is more complex than anticipated, with individual domains of LT being connected to different subcomponents of the DDR and repair machinery.


The transforming protein of Simian virus 40 (SV40), large T-antigen, regulates transcription both positively and negatively during the productive infection cycle. We have isolated a number of cellular genes which are expressed at elevated levels in SV40-transformed cells and have used these to study the mechanism or mechanisms by which the viral transforming protein regulates cellular gene expression. Small RNAs homologous to the mouse B2 repetitive sequence family are found at higher levels in transformed cells than in normal cells and we have shown that pure large T-antigen stimulates transcription of such repeats by RNA polymerase III. A class I major histocompatibility complex (MHC) gene is also activated as a result of SV40 transformation and we have used DNA-mediated gene transfer to study how this gene is regulated by large T-antigen.


2018 ◽  
Vol 92 (15) ◽  
Author(s):  
Allison Dupzyk ◽  
Billy Tsai

ABSTRACT During entry, the nonenveloped polyomavirus (PyV) simian virus 40 (SV40) traffics from the cell surface to the endoplasmic reticulum (ER), where it penetrates the ER membrane to reach the cytosol; the virus is then transported into the nucleus to cause infection. Although a coherent understanding of SV40's host entry is emerging, how the virus is ejected from the ER into the cytosol remains mysterious. Our previous analyses revealed that the cytosolic Hsc70-SGTA-Hsp105 complex binds to SV40 and extracts it from the ER into the cytosol. We now report that the nucleotide exchange factor (NEF) Bag2 stimulates SV40 release from Hsc70, thereby enabling successful virus arrival at the cytosol, which leads to infection. Hsp105, another NEF of Hsc70, displays a function overlapping that of Bag2, underscoring the importance of this release reaction. Our findings identify a new component of an extraction machinery essential during membrane penetration of a nonenveloped virus and provide further mechanistic insights into this process. IMPORTANCE How a nonenveloped virus penetrates a biological membrane to cause infection is a mystery. For the nonenveloped polyomavirus SV40, transport across the ER membrane to reach the cytosol is an essential virus infection step. Here, we identify a novel component of a cytosolic Hsc70-dependent chaperone complex called Bag2 that extracts SV40 from the ER into the cytosol. Bag2 does this by triggering SV40 release from Hsc70, thus ensuring that the virus reaches the cytosol en route for productive infection.


2004 ◽  
Vol 78 (9) ◽  
pp. 4917-4920 ◽  
Author(s):  
Sophie Shaikh ◽  
Christine Skoczylas ◽  
Richard Longnecker ◽  
Kathleen Rundell

ABSTRACT Lymphoblastic cell lines were infected with simian virus 40 (SV40) and then monitored for evidence of a productive infection. No evidence of early gene expression was found 2 days following infection, as determined by assaying viral mRNAs and early antigens. Furthermore, only small amounts of virus could be detected by plaque assay 2 days after infection, and levels slowly declined until they were undetectable after a few weeks in culture. Thus, human lymphocytes are not readily infectible with SV40 and do not provide a simple model for studying interactions of SV40 with a human cell type.


Sign in / Sign up

Export Citation Format

Share Document