Cell killing by simian virus 40: variation in the pattern of lysosomal enzyme release, cellular enzyme release, and cell death during productive infection of normal and simian virus 40-transformed simian cell lines.

1976 ◽  
Vol 18 (1) ◽  
pp. 48-57 ◽  
Author(s):  
L C Norkin ◽  
J Ouellette
2004 ◽  
Vol 78 (9) ◽  
pp. 4917-4920 ◽  
Author(s):  
Sophie Shaikh ◽  
Christine Skoczylas ◽  
Richard Longnecker ◽  
Kathleen Rundell

ABSTRACT Lymphoblastic cell lines were infected with simian virus 40 (SV40) and then monitored for evidence of a productive infection. No evidence of early gene expression was found 2 days following infection, as determined by assaying viral mRNAs and early antigens. Furthermore, only small amounts of virus could be detected by plaque assay 2 days after infection, and levels slowly declined until they were undetectable after a few weeks in culture. Thus, human lymphocytes are not readily infectible with SV40 and do not provide a simple model for studying interactions of SV40 with a human cell type.


1985 ◽  
Vol 5 (4) ◽  
pp. 642-648 ◽  
Author(s):  
J A Small ◽  
D G Blair ◽  
S D Showalter ◽  
G A Scangos

Two plasmids, one containing the simian virus 40 (SV40) genome and the mouse metallothionein I gene and one containing the v-myc gene of avian myelocytomatosis virus MC29, were coinjected into mouse embryos. Of the 13 surviving mice, one, designated M13, contained both myc and SV40 sequences. This mouse developed a cranial bulge identified as a choroid plexus papilloma at 13 weeks and was subsequently sacrificed; tissue samples were taken for further analysis. Primary cell lines derived from these tissues contained both myc and SV40 DNA. No v-myc mRNA could be detected, although SV40 mRNA was present in all of the cell lines tested. T antigen also was expressed in all of the cell lines analyzed. These data suggest that SV40 expression was involved in the abnormalities of mouse M13 and was responsible for the transformed phenotype of the primary cell lines. Primary cell lines from this mouse were atypical in that the population rapidly became progressively more transformed with time in culture based on the following criteria: morphology, growth rate, and the ability to grow in soft agar and in serum-free medium. The data also suggest that factors present in the mouse regulated the ability of SV40 to oncogenically transform most cells and that in vitro culture of cells allowed them to escape those factors.


1986 ◽  
Vol 6 (6) ◽  
pp. 2068-2079
Author(s):  
B A Campbell ◽  
L P Villarreal

Heterologous enhancer recombinants and deletions of the polyomavirus (Py) noncoding region were constructed and analyzed for tissue specificity of DNA replication and transcription in a number of lymphoid and other cell lines. The simian virus 40 72-base-pair repeat, mouse immunoglobulin heavy-chain enhancer, and Moloney murine leukemia virus enhancer were inserted into the PvuII-D locus (nucleotides 5128 through 5265) of Py. The ability of these recombinants and the parental PvuII-D deletion mutant to replicate in permissive 3T6 cells and MOP-6 cells as well as in nonpermissive mouse B lymphoid, T lymphoid, mastocyte, and embryonal carcinoma cells was determined. Wild-type Py DNA was not permissive for replication in most lymphoid cell lines, except one hybridoma line. Simply deleting the Py PvuII-D region, however, gave Py an expanded host range, allowing high-level replication in some T lymphoid and mastocytoma cell lines, indicating that this element can be a tissue-specific negative as well as positive element. Substitution of the murine leukemia virus enhancer for Py PvuII-D yielded a Py genome which retained the ability to replicate in 3T6 cells but also replicated well in B lymphoid cells. Substitution with the immunoglobulin heavy-chain enhancer allowed replication in B lymphoid cells but interfered with replication in 3T6 cells and mastocytomas. Surprisingly, substitution with the simian virus 40 72-base-pair enhancer repeat gave a recombinant which would not replicate in any cell line tried, including MOP-6 cells, even though other recombinants with this enhancer would replicate. Thus, we observed both cooperation and interference in these combinations between enhancer components and the Py genome and that these combined activities were cell specific. These results are presented as evidence that there may be a positional dependence, or syntax, for the recognition of genetic elements controlling Py tissue specificity.


1989 ◽  
Vol 9 (7) ◽  
pp. 2779-2786
Author(s):  
W S Liao ◽  
K T Ma ◽  
C D Woodworth ◽  
L Mengel ◽  
H C Isom

Seven simian virus 40 (SV40)-hepatocyte cell lines were characterized with respect to the ability to express eight liver acute-phase genes. cDNA clones corresponding to albumin, serum amyloid A, alpha 1-acid glycoprotein, haptoglobin, alpha-, beta-, and gamma-fibrinogen, and alpha 1-major-acute-phase protein mRNAs were used in Northern (RNA) or slot blot analyses. In the noninduced state, six of the seven cell lines showed significant (i.e., liverlike) levels of constitutive expression of all genes examined except that expression of haptoglobin mRNA was considerable lower than in the normal liver. To examine whether these immortalized liver cells can respond appropriately to inflammatory mediators, cells were treated with conditioned medium from activated human monocytes or mixed lymphocyte cultures. Results showed that these SV40-hepatocyte cell lines responded to the conditioned media in culture by down-regulating albumin gene expression and up-regulating other acute-phase genes in a time- and dose-dependent manner. These results indicate that the SV40-hepatocytes retained not only the ability to express a number of acute-phase genes but also the ability to respond to external stimuli. The usefulness of these cell lines for analysis of the molecular mechanisms involved in the regulation of these acute-phase genes is discussed.


1985 ◽  
Vol 5 (7) ◽  
pp. 1685-1693
Author(s):  
M Protić-Sabljić ◽  
D Whyte ◽  
J Fagan ◽  
B H Howard ◽  
C M Gorman ◽  
...  

We wished to determine whether simian virus 40 (SV40)-transformed xeroderma pigmentosum cells, despite their defective DNA repair, were suitable for DNA-mediated gene transfer experiments with linked genes. Expression of a nonselectable gene (cat, coding for chloramphenicol acetyltransferase [CAT]) linked to a selectable gene (gpt, coding for xanthine-guanine phosphoribosyltransferase [XPRT]) in the plasmid pSV2catSVgpt was quantified after transfection of SV40-transformed xeroderma pigmentosum [XP20s(SV40)] and normal human [GM0637(SV40)] fibroblast cell lines. A novel autoradiographic assay with [3H]xanthine incorporation showed 0.5 to 0.7% phenotypic expression of XPRT in both cell lines. Without selection, transient CAT activity was 20 times greater in the GM0637(SV40) than in the XP20s(SV40) cells, and transient XPRT activity was 5 times greater. Both of these transient activities were increased and equalized in both cell lines by transfection with pRSVcat or pRSVgpt. Genotypic transformation to gpt+ occurred at a frequency of 2 X 10(-4) to 4 X 10(-4) in both cell lines with pSV2catSVgpt. After 2 to 3 months in selective medium, stable expression of the (nonselected) cat gene was found in 11 (92%) of 12 gpt-containing clones derived from GM0637(SV40) cells and in 13 (81%) of 16 gpt-containing clones from XP20s(SV40) cells. However, the levels of CAT activity did not correlate with those of XPRT activity, and both of these activities varied more than 100-fold among different clones. Copies (1 to 4) of the gpt gene were integrated in four clones of the GM0637(SV40) cells having an XPRT activity of 1 to 5 nmol/min per mg, but 5 to 80 copies were integrated in four XP20s(SV40) clones with an XPRT activity of 0.8 to 1.8 nmol/min per mg. This study shows that XP20s(SV40) is as suitable for gene transfer experiments as the normal human line GM0637(SV40).


1986 ◽  
Vol 6 (4) ◽  
pp. 1204-1217
Author(s):  
P S Jat ◽  
C L Cepko ◽  
R C Mulligan ◽  
P A Sharp

We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.


1989 ◽  
Vol 9 (7) ◽  
pp. 3093-3096 ◽  
Author(s):  
R L Radna ◽  
Y Caton ◽  
K K Jha ◽  
P Kaplan ◽  
G Li ◽  
...  

Simian virus 40 (SV40)-mediated transformation of human fibroblasts offers an experimental system for studying both carcinogenesis and cellular aging, since such transformants show the typical features of altered cellular growth but still have a limited life span in culture and undergo senescence. We have previously demonstrated (D. S. Neufeld, S. Ripley, A. Henderson, and H. L. Ozer, Mol. Cell. Biol. 7:2794-2802, 1987) that transformants generated with origin-defective mutants of SV40 show an increased frequency of overcoming senescence and becoming immortal. To clarify further the role of large T antigen, we have generated immortalized transformants by using origin-defective mutants of SV40 encoding a heat-labile large T antigen (tsA58 transformants). At a temperature permissive for large-T-antigen function (35 degrees C), the cell line AR5 had properties resembling those of cell lines transformed with wild-type SV40. However, the AR5 cells were unable to proliferate or form colonies at temperatures restrictive for large-T-antigen function (39 degrees C), demonstrating a continuous need for large T antigen even in immortalized human fibroblasts. Such immortal temperature-dependent transformants should be useful cell lines for the identification of other cellular or viral gene products that induce cell proliferation in human cells.


Sign in / Sign up

Export Citation Format

Share Document