scholarly journals Mutations in the U5 Sequences Adjacent to the Primer Binding Site Do Not Affect tRNA Cleavage by Rous Sarcoma Virus RNase H but Do Cause Aberrant Integrations In Vivo

2006 ◽  
Vol 80 (1) ◽  
pp. 451-459 ◽  
Author(s):  
Jangsuk Oh ◽  
Kevin W. Chang ◽  
Stephen H. Hughes

ABSTRACT In most retroviruses, the first nucleotide added to the tRNA primer becomes the right end of the U5 region in the right long terminal repeat (LTR); the removal of this tRNA primer by RNase H defines the right end of the linear double-stranded DNA. Most retroviruses have two nucleotides between the 5′ end of the primer binding site (PBS) and the CA dinucleotide that will become the end of the integrated provirus. However, human immunodeficiency virus type 1 (HIV-1) has only one nucleotide at this position, and HIV-2 has three nucleotides. We changed the two nucleotides (TT) between the PBS and the CA dinucleotide of the Rous sarcoma virus (RSV)-derived vector RSVP(A)Z to match the HIV-1 sequence (G) and the HIV-2 sequence (GGT), and we changed the CA dinucleotide to TC. In all three mutants, RNase H removes the entire tRNA primer. Sequence analysis of RSVP(HIV2) proviruses suggests that RSV integrase can remove three nucleotides from the U5 LTR terminus of the linear viral DNA during integration, although this mutation significantly reduced virus titer, suggesting that removing three nucleotides is inefficient. However, the results obtained with RSVP(HIV1) and RSVP(CATC) show that RSV integrase can process and integrate the normal U3 LTR terminus of a linear DNA independently of an aberrant U5 LTR terminus. The aberrant end can then be joined to the host DNA by unusual processes that do not involve the conserved CA dinucleotide. These unusual events generate either large duplications or, less frequently, deletions in the host genomic DNA instead of the normal 5- to 6-base duplications.

2007 ◽  
Vol 82 (2) ◽  
pp. 719-727 ◽  
Author(s):  
Jangsuk Oh ◽  
Mary Jane McWilliams ◽  
John G. Julias ◽  
Stephen H. Hughes

ABSTRACT In retroviruses, the first nucleotide added to the tRNA primer defines the end of the U5 region in the right long terminal repeat, and the subsequent removal of this tRNA primer by RNase H exactly defines the U5 end of the linear double-stranded DNA. In most retroviruses, the entire tRNA is removed by RNase H cleavage at the RNA/DNA junction. However, the RNase H domain of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase cleaves the tRNA 1 nucleotide from the RNA/DNA junction at the U5/primer binding site (PBS) junction, which leaves an rA residue at the U5 terminus. We made sequence changes at the end of the U5 region adjacent to the PBS in HIV-1 to determine whether such changes affect the specificity of tRNA primer cleavage by RNase H. In some of the mutants, RNase H usually removed the entire tRNA, showing that the cleavage specificity was shifted by 1 nucleotide. This result suggests that the tRNA cleavage specificity of the HIV-1 RNase domain H depends on sequences in U5.


1999 ◽  
Vol 73 (8) ◽  
pp. 6307-6318 ◽  
Author(s):  
Shannon Morris ◽  
Jonathan Leis

ABSTRACT Predicted secondary-structure elements encompassing the primer binding site in the 5′ untranslated region of Rous sarcoma virus (RSV) RNA play an integral role in multiple viral replications steps including reverse transcription, DNA integration, and RNA packaging (A. Aiyar, D. Cobrinik, Z. Ge, H. J. Kung, and J. Leis, J. Virol. 66:2464–2472, 1992; D. Cobrinik, A. Aiyar, Z. Ge, M. Katzman, H. Huang, and J. Leis, J. Virol. 65:3864–3872, 1991; J. T. Miller, Z. Ge, S. Morris, K. Das, and J. Leis, J. Virol. 71:7648–7656, 1997). These elements include the U5-Leader stem, U5-IR stem-loop, and U5-TΨC interaction region. Limited digestion of the 5′ untranslated region of wild-type and mutant RSV RNAs with structure- and/or sequence-specific RNases detects the presence of the U5-Leader stem and the U5-IR stem-loop. When a tRNATrp primer is annealed to wild-type RNAs in vitro, limited nuclease mapping indicates that the U5-IR stem becomes partially unwound. This is not observed when mutant RNAs with altered U5-IR stem-loop structures are substituted for wild-type RNAs. The U5-Leader stem also becomes destabilized when the tRNA primer is annealed to either wild-type or mutant RNA fragments. Nuclease mapping studies of tRNATrp, as well as the viral RNA, indicate that the U5-TΨC helix does form in vitro upon primer annealing. Collectively, these data suggest that the various structural elements near the RSV primer binding site undergo significant changes during the process of primer annealing.


2008 ◽  
Vol 82 (14) ◽  
pp. 6788-6797 ◽  
Author(s):  
Paul W. Keller ◽  
Marc C. Johnson ◽  
Volker M. Vogt

ABSTRACT All orthoretroviruses encode a single structural protein, Gag, which is necessary and sufficient for the assembly and budding of enveloped virus-like particles from the cell. The Gag proteins of Rous sarcoma virus (RSV) and human immunodeficiency virus type 1 (HIV-1) contain a short spacer peptide (SP or SP1, respectively) separating the capsid (CA) and nucleocapsid (NC) domains. SP or SP1 and the residues immediately upstream are known to be critical for proper assembly. Using mutagenesis and electron microscopy analysis of insect cells or chicken cells overexpressing RSV Gag, we defined the SP assembly domain to include the last 8 residues of CA, all 12 residues of SP, and the first 4 residues of NC. Five- or two-amino acid glycine-rich insertions or substitutions in this critical region uniformly resulted in the budding of abnormal, long tubular particles. The equivalent SP1-containing HIV-1 Gag sequence was unable to functionally replace the RSV sequence in supporting normal RSV spherical assembly. According to secondary structure predictions, RSV and HIV-1 SP/SP1 and adjoining residues may form an alpha helix, and what is likely the functionally equivalent sequence in murine leukemia virus Gag has been inferred by mutational analysis to form an amphipathic alpha helix. However, our alanine insertion mutagenesis did not provide evidence for an amphipathic helix in RSV Gag. Taken together, these results define a short assembly domain between the folded portions of CA and NC, which is essential for formation of the immature Gag shell.


2000 ◽  
Vol 74 (7) ◽  
pp. 3245-3252 ◽  
Author(s):  
Susanne Werner ◽  
Birgitta M. Wöhrl

ABSTRACT The genes encoding the α (63-kDa) and β (95-kDa) subunits of Rous sarcoma virus (RSV) reverse transcriptase (RT) or the entire Pol polypeptide (99 kDa) were mutated in the conserved aspartic acid residue Asp 181 of the polymerase active site (YMDD) or in the conserved Asp 505 residue of the RNase H active site. We have analyzed heterodimeric recombinant RSV αβ and αPol RTs within which one subunit was selectively mutated. When αβ heterodimers contained the Asp 181→Asn mutation in their β subunits, about 42% of the wild-type polymerase activity was detected, whereas when the heterodimers contained the same mutation in their α subunits, only 7.5% of the wild-type polymerase activity was detected. Similar results were obtained when the conserved Asp 505 residue of the RNase H active site was mutated to Asn. RNase H activity was clearly detectable in αβ heterodimers mutated in the β subunit but was lost when the mutation was present in the α subunit. In summary, our data imply that the polymerase and RNase H active sites are located in the α subunit of the heterodimeric RSV RT αβ.


1992 ◽  
Vol 12 (10) ◽  
pp. 4769-4783
Author(s):  
A M Boulden ◽  
L J Sealy

We have previously reported on the presence of a CArG motif at -100 in the Rous sarcoma virus long terminal repeat which binds an avian nuclear protein termed enhancer factor III (EFIII) (A. Boulden and L. Sealy, Virology 174:204-216, 1990). By all analyses, EFIII protein appears to be the avian homolog of the serum response factor (SRF). In this study, we identify a second CArG motif (EFIIIB) in the Rous sarcoma virus long terminal repeat enhancer at -162 and show only slightly lower binding affinity of the EFIII/SRF protein for this element in comparison with c-fos serum response element (SRE) and EFIII DNAs. Although all three elements bind the SRF with similar affinities, serum induction mediated by the c-fos SRE greatly exceeds that effected by the EFIII or EFIIIB sequence. We postulated that this difference in serum inducibility might result from binding of factors other than the SRF which occurs on the c-fos SRE but not on EFIII and EFIIIB sequences. Upon closer inspection of nuclear proteins which bind the c-fos SRE in chicken embryo fibroblast and NIH 3T3 nuclear extracts, we discovered another binding factor, SRE-binding protein (SRE BP), which fails to recognize EFIII DNA with high affinity. Competition analyses, methylation interference, and site-directed mutagenesis have determined that the SRE BP binding element overlaps and lies immediately 3' to the CArG box of the c-fos SRE. Mutation of the c-fos SRE so that it no longer binds SRE BP reduces serum inducibility to 33% of the wild-type level. Conversely, mutation of the EFIII sequence so that it binds SRE BP with high affinity results in a 400% increase in serum induction, with maximal stimulation equaling that of the c-fos SRE. We conclude that binding of both SRE BP and SRF is required for maximal serum induction. The SRE BP binding site coincides with the recently reported binding site for rNF-IL6 on the c-fos SRE. Nonetheless, we show that SRE BP is distinct from rNF-IL6, and identification of this novel factor is being pursued.


2015 ◽  
Vol 89 (20) ◽  
pp. 10371-10382 ◽  
Author(s):  
Robert A. Dick ◽  
Siddhartha A. K. Datta ◽  
Hirsh Nanda ◽  
Xianyang Fang ◽  
Yi Wen ◽  
...  

ABSTRACTPreviously, no retroviral Gag protein has been highly purified in milligram quantities and in a biologically relevant and active form. We have purified Rous sarcoma virus (RSV) Gag protein and in parallel several truncation mutants of Gag and have studied their biophysical properties and membrane interactionsin vitro. RSV Gag is unusual in that it is not naturally myristoylated. From its ability to assemble into virus-like particlesin vitro, we infer that RSV Gag is biologically active. By size exclusion chromatography and small-angle X-ray scattering, Gag in solution appears extended and flexible, in contrast to previous reports on unmyristoylated HIV-1 Gag, which is compact. However, by neutron reflectometry measurements of RSV Gag bound to a supported bilayer, the protein appears to adopt a more compact, folded-over conformation. At physiological ionic strength, purified Gag binds strongly to liposomes containing acidic lipids. This interaction is stimulated by physiological levels of phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2] and by cholesterol. However, unlike HIV-1 Gag, RSV Gag shows no sensitivity to acyl chain saturation. In contrast with full-length RSV Gag, the purified MA domain of Gag binds to liposomes only weakly. Similarly, both an N-terminally truncated version of Gag that is missing the MA domain and a C-terminally truncated version that is missing the NC domain bind only weakly. These results imply that NC contributes to membrane interactionin vitro, either by directly contacting acidic lipids or by promoting Gag multimerization.IMPORTANCERetroviruses like HIV assemble at and bud from the plasma membrane of cells. Assembly requires the interaction between thousands of Gag molecules to form a lattice. Previous work indicated that lattice formation at the plasma membrane is influenced by the conformation of monomeric HIV. We have extended this work to the more tractable RSV Gag. Our results show that RSV Gag is highly flexible and can adopt a folded-over conformation on a lipid bilayer, implicating both the N and C termini in membrane binding. In addition, binding of Gag to membranes is diminished when either terminal domain is truncated. RSV Gag membrane association is significantly less sensitive than HIV Gag membrane association to lipid acyl chain saturation. These findings shed light on Gag assembly and membrane binding, critical steps in the viral life cycle and an untapped target for antiretroviral drugs.


2006 ◽  
Vol 81 (3) ◽  
pp. 1288-1296 ◽  
Author(s):  
Jared L. Spidel ◽  
Carol B. Wilson ◽  
Rebecca C. Craven ◽  
John W. Wills

ABSTRACT The first few residues of the Rous sarcoma virus (RSV) CA protein comprise a structurally dynamic region that forms part of a Gag-Gag interface in immature virus particles. Dissociation of this interaction during maturation allows refolding and formation of a β-hairpin structure important for assembly of CA monomers into the mature capsid shell. A consensus binding site for the cellular Ubc9 protein was previously identified within this region, suggesting that binding of Ubc9 and subsequent small ubiquitin-like modifier protein 1 (SUMO-1) modification of CA may play a role either in regulating the assembly activity of CA in immature particles or mature cores or in controlling postentry function(s) during the establishment of infection. In the present study, mutations designed to eliminate the consensus binding site were used to dissect the potentially overlapping functions of these residues. The resulting replication defects could not be traced to a failure to form particles of normal composition but, rather, to a deficit in genome replication. Genetic suppressors of two detrimental β-hairpin mutations improved infectivity without restoring the consensus site or creating a novel one elsewhere. Optimal restoration of infectivity to a Lys-to-Arg mutant required a combination of secondary changes, one on the surface of each domain of CA. Rather than arguing for a critical role of Ubc9 and SUMO in RSV replication, these findings provide strong support for a structural role of the N-terminal residues and a particularly striking example of long-range interactions between regions of CA in achieving a functional core competent for genome replication.


2020 ◽  
Author(s):  
Martin Obr ◽  
Clifton L. Ricana ◽  
Nadia Nikulin ◽  
Jon-Philip R. Feathers ◽  
Marco Klanschnig ◽  
...  

AbstractInositol hexakisphosphate (IP6) is an assembly cofactor for HIV-1. We report here that IP6 is also used for assembly of Rous sarcoma virus (RSV), a retrovirus from a different genus. IP6 was ∼100-fold more potent at promoting RSV mature CA assembly than observed for HIV-1 and removal of IP6 in vivo reduced infectivity by 100-fold. By cryo-electron tomography and subtomogram averaging, mature virus-like particles (VLPs) showed an IP6-like density in the CA hexamer, coordinated by rings of six lysines and six arginines. Phosphate and IP6 had opposing effects on CA in vitro assembly, inducing formation of T=1 icosahedrons and tubes, respectively, implying that phosphate promotes pentamer and IP6 hexamer formation. Subtomogram averaging and classification optimized for analysis of pleomorphic retrovirus particles revealed that the heterogeneity of mature RSV CA polyhedrons results from an unexpected, intrinsic CA hexamer flexibility. In contrast, the CA pentamer forms rigid units organizing the local architecture. These different features of hexamers and pentamers determine the structural mechanism to form CA polyhedrons of variable shape in mature RSV particles.


Sign in / Sign up

Export Citation Format

Share Document