scholarly journals Nucleocytoplasmic Shuttling of Bovine Herpesvirus 1 UL47 Protein in Infected Cells

2006 ◽  
Vol 80 (2) ◽  
pp. 1059-1063 ◽  
Author(s):  
Janneke Verhagen ◽  
Ian Hutchinson ◽  
Gillian Elliott

ABSTRACT Previous studies with transfected cells have shown that the herpes simplex virus type 1 (HSV-1) and bovine herpesvirus 1 (BHV-1) UL47 proteins shuttle between the nucleus and the cytoplasm. HSV-1 UL47 has also been shown to bind RNA. Here we examine the BHV-1 UL47 protein in infected cells using a green fluorescent protein-UL47-expressing virus. We show that UL47 is detected in the nucleus early in infection. We use fluorescence loss in photobleaching to show that nuclear UL47 undergoes rapid nucleocytoplasmic shuttling. Furthermore, we demonstrate that actinomycin D inhibits the reaccumulation of UL47 in the nuclei of infected cells. These results suggest that UL47 exhibits behavior similar to that of previously characterized RNA-transporting proteins.

Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1148
Author(s):  
Fouad S. El-mayet ◽  
Kelly S. Harrison ◽  
Clinton Jones

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


2018 ◽  
Vol 92 (22) ◽  
Author(s):  
Tiffany Russell ◽  
Ben Bleasdale ◽  
Michael Hollinshead ◽  
Gillian Elliott

ABSTRACTDespite differences in the pathogenesis and host range of alphaherpesviruses, many stages of their morphogenesis are thought to be conserved. Here, an ultrastructural study of bovine herpesvirus 1 (BoHV-1) envelopment revealed profiles similar to those previously found for herpes simplex virus 1 (HSV-1), with BoHV-1 capsids associating with endocytic tubules. Consistent with the similarity of their genomes and envelopment strategies, the proteomic compositions of BoHV-1 and HSV-1 virions were also comparable. However, BoHV-1 morphogenesis exhibited a diversity in envelopment events. First, heterogeneous primary envelopment profiles were readily detectable at the inner nuclear membrane of BoHV-1-infected cells. Second, the BoHV-1 progeny comprised not just full virions but also an abundance of capsidless, noninfectious light particles (L-particles) that were released from the infected cells in numbers similar to those of virions and in the absence of DNA replication. Proteomic analysis of BoHV-1 L-particles and the much less abundant HSV-1 L-particles revealed that they contained the same complement of envelope proteins as virions but showed variations in tegument content. In the case of HSV-1, the UL46 tegument protein was reproducibly found to be >6-fold enriched in HSV-1 L-particles. More strikingly, the tegument proteins UL36, UL37, UL21, and UL16 were depleted in BoHV-1 but not HSV-1 L-particles. We propose that these combined differences reflect the presence of truly segregated “inner” and “outer” teguments in BoHV-1, making it a critical system for studying the structure and process of tegumentation and envelopment.IMPORTANCEThe alphaherpesvirus family includes viruses that infect humans and animals. Hence, not only do they have a significant impact on human health, but they also have a substantial economic impact on the farming industry. While the pathogenic manifestations of the individual viruses differ from host to host, their relative genetic compositions suggest similarity at the molecular level. This study provides a side-by-side comparison of the particle outputs from the major human pathogen HSV-1 and the veterinary pathogen BoHV-1. Ultrastructural and proteomic analyses have revealed that both viruses have broadly similar morphogenesis profiles and infectious virus compositions. However, the demonstration that BoHV-1 has the capacity to generate vast numbers of capsidless enveloped particles that differ from those produced by HSV-1 in composition implies a divergence in the cell biology of these viruses that impacts our general understanding of alphaherpesvirus morphogenesis.


2000 ◽  
Vol 74 (7) ◽  
pp. 3301-3312 ◽  
Author(s):  
Jerome S. Harms ◽  
Xiaodi Ren ◽  
Sergio C. Oliveira ◽  
Gary A. Splitter

ABSTRACT The alphaherpesvirus tegument protein VP22 has been characterized with multiple traits including microtubule reorganization, nuclear localization, and nonclassical intercellular trafficking. However, all these data were derived from studies using herpes simplex virus type 1 (HSV-1) and may not apply to VP22 homologs of other alphaherpesviruses. We compared subcellular attributes of HSV-1 VP22 (HVP22) with bovine herpesvirus 1 (BHV-1) VP22 (BVP22) using green fluorescent protein (GFP)-fused VP22 expression vectors. Fluorescence microscopy of cell lines transfected with these constructs revealed differences as well as similarities between the two VP22 homologs. Compared to that of HVP22, the BVP22 microtubule interaction was much less pronounced. The VP22 nuclear interaction varied, with a marbled or halo appearance for BVP22 and a speckled or nucleolus-bound appearance for HVP22. Both VP22 homologs associated with chromatin at various stages of mitosis and could traffic from expressing cells to the nuclei of nonexpressing cells. However, distinct qualitative differences in microtubule, nuclear, and chromatin association as well as trafficking were observed. The differences in VP22 homolog characteristics revealed in this study will help define VP22 function within HSV-1 and BHV-1 infection.


2003 ◽  
Vol 16 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Clinton Jones

SUMMARY Primary infection by herpes simplex virus type 1 (HSV-1) can cause clinical symptoms in the peripheral and central nervous system, upper respiratory tract, and gastrointestinal tract. Recurrent ocular shedding leads to corneal scarring that can progress to vision loss. Consequently, HSV-1 is the leading cause of corneal blindness due to an infectious agent. Bovine herpesvirus 1 (BHV-1) has similar biological properties to HSV-1 and is a significant health concern to the cattle industry. Latency of BHV-1 and HSV-1 is established in sensory neurons of trigeminal ganglia, but latency can be interrupted periodically, leading to reactivation from latency and spread of infectious virus. The ability of HSV-1 and BHV-1 to reactivate from latency leads to virus transmission and can lead to recurrent disease in individuals latently infected with HSV-1. During latency, the only abundant HSV-1 RNA expressed is the latency-associated transcript (LAT). In latently infected cattle, the latency-related (LR) RNA is the only abundant transcript that is expressed. LAT and LR RNA are antisense to ICP0 or bICP0, viral genes that are crucial for productive infection, suggesting that LAT and LR RNA interfere with productive infection by inhibiting ICP0 or bICP0 expression. Numerous studies have concluded that LAT expression is important for the latency-reactivation cycle in animal models. The LR gene has recently been demonstrated to be required for the latency-reactivation cycle in cattle. Several recent studies have demonstrated that LAT and the LR gene inhibit apoptosis (programmed cell death) in trigeminal ganglia of infected animals and transiently transfected cells. The antiapoptotic properties of LAT map to the same sequences that are necessary for promoting reactivation from latency. This review summarizes our current knowledge of factors regulating the latency-reactivation cycle of HSV-1 and BHV-1.


2009 ◽  
Vol 83 (14) ◽  
pp. 6978-6986 ◽  
Author(s):  
M. G. Lyman ◽  
C. D. Kemp ◽  
M. P. Taylor ◽  
L. W. Enquist

ABSTRACT Pseudorabies virus (PRV) Us9 is a small, tail-anchored (TA) membrane protein that is essential for axonal sorting of viral structural proteins and is highly conserved among other members of the alphaherpesvirus subfamily. We cloned the Us9 homologs from two human pathogens, varicella-zoster virus (VZV) and herpes simplex virus type 1 (HSV-1), as well as two veterinary pathogens, equine herpesvirus type 1 (EHV-1) and bovine herpesvirus type 1 (BHV-1), and fused them to enhanced green fluorescent protein to examine their subcellular localization and membrane topology. Akin to PRV Us9, all of the Us9 homologs localized to the trans-Golgi network and had a type II membrane topology (typical of TA proteins). Furthermore, we examined whether any of the Us9 homologs could compensate for the loss of PRV Us9 in anterograde, neuron-to-cell spread of infection in a compartmented chamber system. EHV-1 and BHV-1 Us9 were able to fully compensate for the loss of PRV Us9, whereas VZV and HSV-1 Us9 proteins were unable to functionally replace PRV Us9 when they were expressed in a PRV background.


1998 ◽  
Vol 72 (9) ◽  
pp. 7563-7568 ◽  
Author(s):  
Prashant Desai ◽  
Stanley Person

ABSTRACT The herpes simplex virus type 1 (HSV-1) UL35 open reading frame (ORF) encodes a 12-kDa capsid protein designated VP26. VP26 is located on the outer surface of the capsid specifically on the tips of the hexons that constitute the capsid shell. The bioluminescent jellyfish (Aequorea victoria) green fluorescent protein (GFP) was fused in frame with the UL35 ORF to generate a VP26-GFP fusion protein. This fusion protein was fluorescent and localized to distinct regions within the nuclei of transfected cells following infection with wild-type virus. The VP26-GFP marker was introduced into the HSV-1 (KOS) genome resulting in recombinant plaques that were fluorescent. A virus, designated K26GFP, was isolated and purified and was shown to grow as well as the wild-type virus in cell culture. An analysis of the intranuclear capsids formed in K26GFP-infected cells revealed that the fusion protein was incorporated into A, B, and C capsids. Furthermore, the fusion protein incorporated into the virion particle was fluorescent as judged by fluorescence-activated cell sorter (FACS) analysis of infected cells in the absence of de novo protein synthesis. Cells infected with K26GFP exhibited a punctate nuclear fluorescence at early times in the replication cycle. At later times during infection a generalized cytoplasmic and nuclear fluorescence, including fluorescence at the cell membranes, was observed, confirming visually that the fusion protein was incorporated into intranuclear capsids and mature virions.


Sign in / Sign up

Export Citation Format

Share Document