scholarly journals Effective Cytotoxic T Lymphocyte Targeting of Persistent HIV-1 during Antiretroviral Therapy Requires Priming of Naive CD8+T Cells

mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Kellie N. Smith ◽  
Robbie B. Mailliard ◽  
Paolo A. Piazza ◽  
Will Fischer ◽  
Bette T. Korber ◽  
...  

ABSTRACTCuring HIV-1 infection will require elimination of persistent cellular reservoirs that harbor latent virus in the face of combination antiretroviral therapy (cART). Proposed immunotherapeutic strategies to cure HIV-1 infection include enhancing lysis of these infected cells by cytotoxic T lymphocytes (CTL). A major challenge in this strategy is overcoming viral immune escape variants that have evaded host immune control. Here we report that naive CD8+T cells from chronic HIV-1-infected participants on long-term cART can be primed by dendritic cells (DC). These DC must be mature, produce high levels of interleukin 12p70 (IL-12p70), be responsive to CD40 ligand (CD40L), and be loaded with inactivated, autologous HIV-1. These DC-primed CD8+T cell responders produced high levels of gamma interferon (IFN-γ) in response to a broad range of both conserved and variable regions of Gag and effectively killed CD4+T cell targets that were either infected with the autologous latent reservoir-associated virus or loaded with autologous Gag peptides. In contrast, HIV-1-specific memory CD8+T cells stimulated with autologous HIV-1-loaded DC produced IFN-γ in response to a narrow range of conserved and variable Gag peptides compared to the primed T cells and most notably, displayed significantly lower cytolytic function. Our findings highlight the need to selectively induce new HIV-1-specific CTL from naive precursors while avoiding activation of existing, dysfunctional memory T cells in potential curative immunotherapeutic strategies for HIV-1 infection.IMPORTANCECurrent immunotherapeutic approaches aim to enhance antiviral immunity against the HIV-1 reservoir; however, it has yet to be shown whether T cells from persons on cART can recognize and eliminate virus-infected cells. We show that in persons on cART a personalized medicine approach using their dendritic cells to stimulate their naive T cells induces potent effector CTLin vitrothat recognize and eradicate HIV-1-infected CD4+T cells. Additionally, we show that the same stimulation of existing memory T cells results in cytokine secretion but limited effector function. Our study demonstrates that the naive T cell repertoire can recognize persistent HIV-1 during cART and supports immunotherapy strategies for an HIV-1 cure that targets naive T cells, rather than existing, dysfunctional, memory T cells.

2012 ◽  
Vol 8 (1) ◽  
pp. e1002437 ◽  
Author(s):  
Ming Zeng ◽  
Peter J. Southern ◽  
Cavan S. Reilly ◽  
Greg J. Beilman ◽  
Jeffrey G. Chipman ◽  
...  

Blood ◽  
2000 ◽  
Vol 95 (4) ◽  
pp. 1167-1174 ◽  
Author(s):  
Francesco Annunziato ◽  
Grazia Galli ◽  
Filomena Nappi ◽  
Lorenzo Cosmi ◽  
Roberto Manetti ◽  
...  

Human T helper (Th) cells (Th1- or Th2-oriented memory T cells as well as Th1- or Th2-polarized naive T cells) were infected in vitro with an R5-tropic HIV-1 strain (BaL) and assessed for their profile of cytokine production, CCR5 receptor expression, and HIV-1 p24 antigen (p24 Ag) production. Higher p24 Ag production was found in CCR5-negative Th2-like memory T cells than in CCR5-positive Th1-like memory T cells. By contrast, p24 Ag production was higher in Th1-polarized activated naive T cells in the first 4 days after infection. However, p24 Ag production in Th1-polarized T cells became comparable or even lower than the production in Th2-polarized populations later in infection or when the cells were infected with HIV-1BaL after secondary stimulation. The higher levels of p24 Ag production by Th1-polarized naive T cells soon after infection reflected a higher virus entry, as assessed by the single round infection assay using the HIV–chloramphenicol acetyl transferase (HIV-CAT) R5-tropic virus that contains the envelope protein of HIV-1 YU2 strain. The limitation of viral spread in the Th1-polarized populations, despite the initial higher level of T-cell entry of R5-tropic strains, was due to the ability of Th1 cells to produce greater amounts of β-chemokines than Th2 cells. In fact, an inverse correlation was observed between Th1-polarized naive T cells and Th1-like memory-activated T cells in regards to p24 Ag production and the release of the following CCR5-binding chemokines: regulated on activation normal T expressed and secreted (RANTES), macrophage inflammatory protein–1 (MIP-1), and MIP-1β. Moreover, infection with the HIV-1BaL strain of Th1-polarized T cells in the presence of a mixture of anti-RANTES, anti–MIP-1, and anti–MIP-1β neutralizing antibodies resulted in a significant increase of HIV-1 expression. These findings suggest that Th1-type responses may favor CD4+ T-cell infection by R5-tropic HIV-1 strains, but HIV-1 spread in Th1 cells is limited by their ability to produce CCR5-binding chemokines.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3002-3002
Author(s):  
Patrick J Hanley ◽  
J. Joseph Melenhorst ◽  
Phillip Scheinberg ◽  
Gail J Demmler-Harrison ◽  
Daniele Lilleri ◽  
...  

Abstract Abstract 3002 Adoptive transfer of CMV-specific T cells derived from adult CMV-seropositive (CMVpos) donors can effectively restore antiviral immunity after stem cell transplantation. However due to the absence of CMV antigen-specific memory T cells in cord blood (CB) and adult CMV-seronegative (CMVneg) donors, different culture systems are required to generate virus-specific T cells for adoptive transfer. With a novel protocol we have generated CMVpp65-specific T cells from CB and found that 15/15 CB T cell lines recognized atypical epitopes of pp65. We then explored the generation of CMV-specific CTL from CMVneg donors using a GMP-compliant methodology and studied the epitopes recognized. CD45RA+ naive T cells were selected from the peripheral blood of CMVneg donors and stimulated with pp65-Pepmix-pulsed dendritic cells with supplemented with IL-7, IL-12, and IL-15. For subsequent stimulations T cells were stimulated with pp65-Pepmix-pulsed EBV-LCL and IL-15 or IL-2. CMVpp65-specific T cells (CMV-CTL) expanded from 8 of 11 CMVneg donors were primarily CD8+ T cells (mean 71%). Naïve donor CMV-CTL secreted IFN- γ in response to pp65 peptides (mean 224; range: 38–611 SFC/1×105 cells) compared to irrelevant peptides (mean 12;Range 3–37) as measured in Elispot assays and lysed pp65-pulsed target cells (mean :48; range :15–70%) but not negative controls (mean 22; range 4–40%). These CMV-CTL derived from naive (but not memory) T cells recognized only novel and atypical pp65 epitopes (such as the HLA-A2-restricted epitopes LQTGIHVRV and MLNIPSINV) but not the typical HLA-A2-restricted epitope NLVPMVATV as confirmed by ELISPOT and multimer analysis. These results are similar to CB-derived CTL. Analysis of the avidity of naïve donor CTL specific for the atypical CMV epitopes revealed that the 1/2 maximum effective concentration was similar (mean: 600 pM) to CMVpos CTL recognizing typical epitopes (mean: 300 pM), and more avid than CMVpos CTL recognizing atypical epitopes (mean: 4 nM), highlighting the difference between naïve-derived and memory-derived CTL. TCR sequencing performed on T cells specific for typical (CMVpos) and atypical (CMVpos, CMVneg, and CB) epitopes revealed that CMVpos donor CMV-CTL recognizing typical epitopes were markedly more oligoclonal than CTL recognizing the atypical epitopes derived from CB, CMVpos, or CMVneg donors. To address the concern that atypical epitopes might not be naturally presented by CMV-infected cells and therefore not recognized by in vitro generated CTL, we tested whether CMV CTL (from CB, CMVpos, CMVneg) generated using CMV AD169-infected fibroblasts or CMV VR1814-infected DCs would recognize the same epitopes. As before, CMVpos CMV CTL recognized typical epitopes of pp65 while CB and CMVneg CMV CTL recognized only atypical epitopes, suggesting that the epitopes are naturally processed and presented by APCs, and that the atypical epitopes observed are not an artifact of using exogenous antigens like the pp65 Pepmix. Thus, despite their unusual repertoire, T cells derived from CB or CMVneg donors are likely to control CMV infection. These results reveal major differences in the naïve and memory CMV specific T cell repertoire that merits further exploration. Nevertheless, we demonstrated that atypical epitopes are naturally presented by CMV infected cells and we are now evaluating the clinical efficacy of these CTL in recipients of CBT. These studies should determine if naive T cells primed in vitro are able to persist and establish memory and virus protection in vivo. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (2) ◽  
pp. 229-240 ◽  
Author(s):  
Akiko Iwasaki ◽  
Brian Lee Kelsall

Orally administered antigens often generate immune responses that are distinct from those injected systemically. The role of antigen-presenting cells in determining the type of T helper cell response induced at mucosal versus systemic sites is unclear. Here we examine the phenotypic and functional differences between dendritic cells (DCs) freshly isolated from Peyer's patches (PP) and spleen (SP). Surface phenotypic analysis of CD11c+ DC populations revealed that PP DCs expressed higher levels of major histocompatibility complex class II molecules, but similar levels of costimulatory molecules and adhesion molecules compared with SP DCs. Freshly isolated, flow cytometrically sorted 98–100% pure CD11c+ DC populations from PP and SP were compared for their ability to stimulate naive T cells. First, PP DCs were found to be much more potent in stimulating allogeneic T cell proliferation compared with SP DCs. Second, by using naive T cells from ovalbumin peptide–specific T cell receptor transgenic mice, these ex vivo DCs derived from PP, but not from SP, were found to prime for the production of interleukin (IL)-4 and IL-10 (Th2 cytokines). In addition, PP DCs were found to prime T cells for the production of much lower levels of interferon (IFN)-γ (Th1) compared with SP DCs. The presence of neutralizing antibody against IL-10 in the priming culture dramatically enhanced IFN-γ production by T cells stimulated with PP DCs. Furthermore, stimulation of freshly isolated PP DCs via the CD40 molecule resulted in secretion of high levels of IL-10, whereas the same stimulus induced no IL-10 secretion from SP DCs. These results suggest that DCs residing in different tissues are capable of inducing distinct immune responses and that this may be related to the distinct cytokines produced by the DCs from these tissues.


Blood ◽  
2012 ◽  
Vol 120 (9) ◽  
pp. 1856-1867 ◽  
Author(s):  
Ming Zeng ◽  
Mirko Paiardini ◽  
Jessica C. Engram ◽  
Greg J. Beilman ◽  
Jeffrey G. Chipman ◽  
...  

Abstract Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1–infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.


2012 ◽  
Vol 6 (1) ◽  
pp. 16-25 ◽  
Author(s):  
Fabrice Tiba ◽  
Frans Nauwelaers ◽  
Siaka Traoré ◽  
Boubacar Coulibaly ◽  
Thierry Ouedraogo ◽  
...  

There are no data on the outcome of highly active antiretroviral therapy (HAART) in HIV-infected adults in rural Burkina Faso. We therefore assessed CD4+ T-cell counts and HIV-1 plasma viral load (VL), the proportion of naive T-cells (co-expressing CCR7 and CD45RA) and T-cell activation (expression of CD95 or CD38) in 61 previously untreated adult patients from Nouna, Burkina Faso, at baseline and 2 weeks, 1, 3, 6, 9 and 12 months after starting therapy. Median CD4+ T-cell counts increased from 174 (10th-90th percentile: 33-314) cells/µl at baseline to 300 (114- 505) cells/µl after 3 months and 360 (169-562) cells/µl after 12 months of HAART. Median VL decreased from 5.8 (4.6- 6.6) log10 copies/ml at baseline to 1.6 (1.6-2.3) log10 copies/ml after 12 months. Early CD4+ T-cell recovery was accompanied by a reduction of the expression levels of CD95 and CD38 on T-cells. Out of 42 patients with complete virological follow-up under HAART, 19 (45%) achieved concordant good immunological (gain of ≥100 CD4+ T-cells/µl above baseline) and virological (undetectable VL) responses after 12 months of treatment (intention-to-treat analysis). Neither a decreased expression of the T-cell activation markers CD38 and CD95, nor an increase in the percentage of naive T-cells reliably predicted good virological treatment responses in patients with good CD4+ T-cell reconstitution. Repeated measurement of CD4+ T-cell counts during HAART remains the most important parameter for immunologic monitoring. Substitution of repeated VL testing by determination of T-cell activation levels (e.g., CD38 expression on CD8+ T-cells) should be applied with caution.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


2015 ◽  
Vol 213 (1) ◽  
pp. 123-138 ◽  
Author(s):  
Arata Takeuchi ◽  
Mohamed El Sherif Gadelhaq Badr ◽  
Kosuke Miyauchi ◽  
Chitose Ishihara ◽  
Reiko Onishi ◽  
...  

Naive T cells differentiate into various effector T cells, including CD4+ helper T cell subsets and CD8+ cytotoxic T cells (CTL). Although cytotoxic CD4+ T cells (CD4+CTL) also develop from naive T cells, the mechanism of development is elusive. We found that a small fraction of CD4+ T cells that express class I–restricted T cell–associated molecule (CRTAM) upon activation possesses the characteristics of both CD4+ and CD8+ T cells. CRTAM+ CD4+ T cells secrete IFN-γ, express CTL-related genes, such as eomesodermin (Eomes), Granzyme B, and perforin, after cultivation, and exhibit cytotoxic function, suggesting that CRTAM+ T cells are the precursor of CD4+CTL. Indeed, ectopic expression of CRTAM in T cells induced the production of IFN-γ, expression of CTL-related genes, and cytotoxic activity. The induction of CD4+CTL and IFN-γ production requires CRTAM-mediated intracellular signaling. CRTAM+ T cells traffic to mucosal tissues and inflammatory sites and developed into CD4+CTL, which are involved in mediating protection against infection as well as inducing inflammatory response, depending on the circumstances, through IFN-γ secretion and cytotoxic activity. These results reveal that CRTAM is critical to instruct the differentiation of CD4+CTL through the induction of Eomes and CTL-related gene.


Sign in / Sign up

Export Citation Format

Share Document