scholarly journals Receptor Polymorphism Restricts Contact-Dependent Growth Inhibition to Members of the Same Species

mBio ◽  
2013 ◽  
Vol 4 (4) ◽  
Author(s):  
Zachary C. Ruhe ◽  
Adam B. Wallace ◽  
David A. Low ◽  
Christopher S. Hayes

ABSTRACT Bacteria that express contact-dependent growth inhibition (CDI) systems outcompete siblings that lack immunity, suggesting that CDI mediates intercellular competition. To further explore the role of CDI in competition, we determined the target cell range of the CDIEC93 system from Escherichia coli EC93. The CdiAEC93 effector protein recognizes the widely conserved BamA protein as a receptor, yet E. coli EC93 does not inhibit other enterobacterial species. The predicted membrane topology of BamA indicates that three of its extracellular loops vary considerably between species, suggesting that loop heterogeneity may control CDI specificity. Consistent with this hypothesis, other enterobacteria are sensitized to CDIEC93 upon the expression of E. coli bamA and E. coli cells become CDIEC93 resistant when bamA is replaced with alleles from other species. Our data indicate that BamA loops 6 and 7 form the CdiAEC93-binding epitope and their variation between species restricts CDIEC93 target cell selection. Although BamA loops 6 and 7 vary dramatically between species, these regions are identical in hundreds of E. coli strains, suggesting that BamAEcoli and CdiAEC93 play a role in self-nonself discrimination. IMPORTANCE Contact-dependent growth inhibition (CDI) systems are widespread among Gram-negative bacteria, enabling them to bind to neighboring bacterial cells and deliver protein toxins that inhibit cell growth. In this study, we tested the role of CDI in interspecies competition using intestinal isolate Escherichia coli EC93 as an inhibitor cell model. Although E. coli EC93 inhibits different E. coli strains, other bacterial species from the intestine are completely resistant to CDI. We show that resistance is due to small variations in the CDI receptor that prevent other species from being recognized as target cells. CDI receptor interactions thus provide a mechanism by which bacteria can distinguish siblings and other close relatives (self) from more distant relatives or other species of bacteria (nonself). Our results provide a possible means by which antimicrobials could be directed to one or only a few related bacterial pathogens by using a specific receptor “zip code.”

mBio ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Allison M. Jones ◽  
Petra Virtanen ◽  
Disa Hammarlöf ◽  
William J. Allen ◽  
Ian Collinson ◽  
...  

ABSTRACT The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins. IMPORTANCE Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. Mutations in genes coding for members of the Sec translocon render cells resistant to these CDI toxins by blocking their movement into and through target cell membranes. This work lays the foundation for understanding how CDI toxins interact with the protein export machinery and has direct relevance to development of new antibiotics that can penetrate bacterial cell envelopes.


2021 ◽  
Author(s):  
Marcus Wäneskog ◽  
Tiffany Halvorsen ◽  
Klara Filek ◽  
Feifei Xu ◽  
Disa L. Hammarlöf ◽  
...  

The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI (cdiBAI) were identified and isolated in 2005 from an Escherichia coli isolate (EC93) from rats. Although the cdiBAI EC93 locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional cdiBAI loci (including the previously identified cdi locus), both carried on a large 127 kb plasmid. These cdiBAI systems are differentially expressed in laboratory media, enabling EC93 to outcompete E. coli cells lacking cognate cdiI immunity genes. The two CDI systems deliver distinct effector peptides that each dissipate the membrane potential of target cells, although the two toxins display different toxic potencies. Despite the differential expression and toxic potencies of these CDI systems, both yielded similar competitive advantages against E. coli cells lacking immunity. This can be explained by the fact that the less expressed cdiBAI system (cdiBAIEC93-2 ) delivers a more potent toxin than the highly expressed cdiBAIEC93-1 system. Moreover, our results indicate that unlike most sequenced CDI+ bacterial isolates, the two cdi loci of E. coli EC93 are located on a plasmid and are expressed in laboratory media.


2009 ◽  
Vol 191 (6) ◽  
pp. 1777-1786 ◽  
Author(s):  
S. K. Aoki ◽  
J. S. Webb ◽  
B. A. Braaten ◽  
D. A. Low

ABSTRACT Contact-dependent growth inhibition (CDI) is a mechanism identified in Escherichia coli by which bacteria expressing two-partner secretion proteins encoded by cdiA and cdiB bind to BamA in the outer membranes of target cells and inhibit their growth. A third gene in the cluster, cdiI, encodes a small protein that is necessary and sufficient to confer immunity to CDI, thereby preventing cells expressing the cdiBA genes from inhibiting their own growth. In this study, the cdiI gene was placed under araBAD promoter control to modulate levels of the immunity protein and thereby induce CDI by removal of arabinose. This CDI autoinhibition system was used for metabolic analyses of a single population of E. coli cells undergoing CDI. Contact-inhibited cells showed altered cell morphology, including the presence of filaments. Notably, CDI was reversible, as evidenced by resumption of cell growth and normal cellular morphology following induction of the CdiI immunity protein. Recovery of cells from CDI also required an energy source. Cells undergoing CDI showed a significant, reversible downregulation of metabolic parameters, including aerobic respiration, proton motive force (Δp), and steady-state ATP levels. It is unclear whether the decrease in respiration and/or Δp is directly involved in growth inhibition, but a role for ATP in the CDI mechanism was ruled out using an atp mutant. Consistent with the observed decrease in Δp, the phage shock response was induced in cells undergoing CDI but not in recovering cells, based on analysis of levels of pspA mRNA.


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
Leanid Laganenka ◽  
Victor Sourjik

ABSTRACTBiofilms in nature typically consist of multiple species, and microbial interactions are likely to have crucial effects on biofilm development, structure, and functions. The best-understood form of communication within bacterial communities involves the production, release, and detection of signal molecules (autoinducers), known as quorum sensing. Although autoinducers mainly promote intraspecies communication, autoinducer 2 (AI-2) is produced and detected by a variety of bacteria, thus principally allowing interspecies communication. Here we show the importance of AI-2-mediated signaling in the formation of mixed biofilms byEnterococcus faecalisandEscherichia coli. Our results demonstrate that AI-2 produced byE. faecalispromotes collective behaviors ofE. coliat lower cell densities, enhancing autoaggregation ofE. colibut also leading to chemotaxis-dependent coaggregation between the two species. Finally, we show that formation of such mixed dual-species biofilms increases the stress resistance of bothE. coliandE. faecalis.IMPORTANCEThe role of interspecies communication in the development of mixed microbial communities is becoming increasingly apparent, but specific examples of such communication remain limited. The universal signal molecule AI-2 is well known to regulate cell-density-dependent phenotypes of many bacterial species but, despite its potential for interspecies communication, the role of AI-2 in the establishment of multispecies communities is not well understood. In this study, we explore AI-2 signaling in a dual-species community containing two bacterial species that naturally cooccur in their mammalian hosts, i.e.,Escherichia coliandEnterococcus faecalis. We show that active production of AI-2 byE. faecalisallowsE. colito perform collective behaviors at low cell densities. Additionally, AI-2- and chemotaxis-dependent coaggregation withE. faecaliscreates nucleation zones for rapid growth ofE. colimicrocolonies in mixed biofilms and enhances the stress resistance of both species.


2019 ◽  
Vol 201 (14) ◽  
Author(s):  
Jonathan P. Allen ◽  
Alan R. Hauser

ABSTRACTContact-dependent growth inhibition (CDI) systems are used in bacterial competition to hinder the growth of neighboring microbes. These systems utilize a two-partner secretion mechanism to display the CdiA exoprotein at the bacterial cell surface. CdiA forms a long filamentous stalk that facilitates binding to a target cell and delivery of a C-terminal toxin (CT) domain. This CT domain is processed and delivered into the cytoplasm of a target cell upon contact. CDI systems also encode a cognate immunity protein (CdiI) that protects siblings and resistant targeted cells from intoxication by high-affinity binding to the CT. CdiA CT domains vary among strains within a species, and many alleles encode enzymatic functions that target nucleic acids. This variation is thought to help drive diversity and adaptation within a species. CdiA diversity is well studied inEscherichia coliand several other bacteria, but little is known about the extent of this diversity inPseudomonas aeruginosa. The purpose of this review is to highlight the variability that exists in CDI systems ofP. aeruginosa. We show that this diversity is apparent even among strains isolated from a single geographical region, suggesting that CDI systems play an important role in the ecology ofP. aeruginosa.


2018 ◽  
Vol 200 (22) ◽  
Author(s):  
Andrew I. Perault ◽  
Peggy A. Cotter

ABSTRACT The respiratory tracts of individuals afflicted with cystic fibrosis (CF) harbor complex polymicrobial communities. By an unknown mechanism, species of the Gram-negative Burkholderia cepacia complex, such as Burkholderia dolosa, can displace other bacteria in the CF lung, causing cepacia syndrome, which has a poor prognosis. The genome of B. dolosa strain AU0158 (BdAU0158) contains three loci that are predicted to encode contact-dependent growth inhibition (CDI) systems. CDI systems function by translocating the toxic C terminus of a large exoprotein directly into target cells, resulting in growth inhibition or death unless the target cells produce a cognate immunity protein. We demonstrate here that each of the three bcpAIOB loci in BdAU0158 encodes a distinct CDI system that mediates interbacterial competition in an allele-specific manner. While only two of the three bcpAIOB loci were expressed under the in vitro conditions tested, the third conferred immunity under these conditions due to the presence of an internal promoter driving expression of the bcpI gene. One BdAU0158 bcpAIOB allele is highly similar to bcpAIOB in Burkholderia thailandensis strain E264 (BtE264), and we showed that their BcpI proteins are functionally interchangeable, but contact-dependent signaling (CDS) phenotypes were not observed in BdAU0158. Our findings suggest that the CDI systems of BdAU0158 may provide this pathogen an ecological advantage during polymicrobial infections of the CF respiratory tract. IMPORTANCE Human-associated polymicrobial communities can promote health and disease, and interbacterial interactions influence the microbial ecology of such communities. Polymicrobial infections of the cystic fibrosis respiratory tract impair lung function and lead to the death of individuals suffering from this disorder; therefore, a greater understanding of these microbial communities is necessary for improving treatment strategies. Bacteria utilize contact-dependent growth inhibition systems to kill neighboring competitors and maintain their niche within multicellular communities. Several cystic fibrosis pathogens have the potential to gain an ecological advantage during infection via contact-dependent growth inhibition systems, including Burkholderia dolosa. Our research is significant, as it has identified three functional contact-dependent growth inhibition systems in B. dolosa that may provide this pathogen a competitive advantage during polymicrobial infections.


2002 ◽  
Vol 68 (5) ◽  
pp. 2600-2604 ◽  
Author(s):  
John Samelis ◽  
John N. Sofos

ABSTRACT Growth of Escherichia coli O157:H7 strain ATCC 43895 was monitored at 5, 10, 15, and 25°C in both pure and mixed (1:1) cultures with a gluconate-producing Pseudomonas sp. found in meat to evaluate the effect of the absence and presence of 1% glucose in broth on temperature-dependent competition. The number of colonies of the Pseudomonas strain exceeded 9 log CFU/ml under all conditions tested. The pathogen grew better as the temperature increased from 10 to 15 and 25°C and grew better in pure culture than in mixed cultures. Pseudomonas sp. inhibited E. coli O157:H7 in cocultures with glucose at 10°C, while at 15°C the pathogen exhibited a biphasic pattern of growth with an intermediate inactivation period. Pathogen inhibition was much weaker in cocultures grown without glucose at 10 to 15°C and, irrespective of glucose, at 25°C. These results indicate that glucose enhances the growth inhibition of E. coli O157:H7 by some Pseudomonas spp., potentially due to its rapid uptake and conversion to gluconate, at low (≤15°C) temperatures.


2012 ◽  
Vol 78 (19) ◽  
pp. 6799-6803 ◽  
Author(s):  
Sam Abraham ◽  
David M. Gordon ◽  
James Chin ◽  
Huub J. M. Brouwers ◽  
Peter Njuguna ◽  
...  

ABSTRACTThe role ofEscherichia colias a pathogen has been the focus of considerable study, while much less is known about it as a commensal and how it adapts to and colonizes different environmental niches within the mammalian gut. In this study, we characterizeEscherichia coliorganisms (n= 146) isolated from different regions of the intestinal tracts of eight pigs (dueodenum, ileum, colon, and feces). The isolates were typed using the method of random amplified polymorphic DNA (RAPD) and screened for the presence of bacteriocin genes and plasmid replicon types. Molecular analysis of variance using the RAPD data showed thatE. coliisolates are nonrandomly distributed among different gut regions, and that gut region accounted for 25% (P< 0.001) of the observed variation among strains. Bacteriocin screening revealed that a bacteriocin gene was detected in 45% of the isolates, with 43% carrying colicin genes and 3% carrying microcin genes. Of the bacteriocins observed (H47, E3, E1, E2, E7, Ia/Ib, and B/M), the frequency with which they were detected varied with respect to gut region for the colicins E2, E7, Ia/Ib, and B/M. The plasmid replicon typing gave rise to 25 profiles from the 13 Inc types detected. Inc F types were detected most frequently, followed by Inc HI1 and N types. Of the Inc types detected, 7 were nonrandomly distributed among isolates from the different regions of the gut. The results of this study indicate that not only may the different regions of the gastrointestinal tract harbor different strains ofE. colibut also that strains from different regions have different characteristics.


2020 ◽  
Vol 202 (10) ◽  
Author(s):  
Yannick R. Brunet ◽  
Christophe S. Bernard ◽  
Eric Cascales

ABSTRACT The type VI secretion system (T6SS) is a weapon for delivering effectors into target cells that is widespread in Gram-negative bacteria. The T6SS is a highly versatile machine, as it can target both eukaryotic and prokaryotic cells, and it has been proposed that T6SSs are adapted to the specific needs of each bacterium. The expression of T6SS gene clusters and the activation of the secretion apparatus are therefore tightly controlled. In enteroaggregative Escherichia coli (EAEC), the sci1 T6SS gene cluster is subject to a complex regulation involving both the ferric uptake regulator (Fur) and DNA adenine methylase (Dam)-dependent DNA methylation. In this study, an additional, internal, promoter was identified within the sci1 gene cluster using +1 transcriptional mapping. Further analyses demonstrated that this internal promoter is controlled by a mechanism strictly identical to that of the main promoter. The Fur binding box overlaps the −10 transcriptional element and a Dam methylation site, GATC-32. Hence, the expression of the distal sci1 genes is repressed and the GATC-32 site is protected from methylation in iron-rich conditions. The Fur-dependent protection of GATC-32 was confirmed by an in vitro methylation assay. In addition, the methylation of GATC-32 negatively impacted Fur binding. The expression of the sci1 internal promoter is therefore controlled by iron availability through Fur regulation, whereas Dam-dependent methylation maintains a stable ON expression in iron-limited conditions. IMPORTANCE Bacteria use weapons to deliver effectors into target cells. One of these weapons, the type VI secretion system (T6SS), assembles a contractile tail acting as a spring to propel a toxin-loaded needle. Its expression and activation therefore need to be tightly regulated. Here, we identified an internal promoter within the sci1 T6SS gene cluster in enteroaggregative E. coli. We show that this internal promoter is controlled by Fur and Dam-dependent methylation. We further demonstrate that Fur and Dam compete at the −10 transcriptional element to finely tune the expression of T6SS genes. We propose that this elegant regulatory mechanism allows the optimum production of the T6SS in conditions where enteroaggregative E. coli encounters competing species.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Laura Heinisch ◽  
Katharina Zoric ◽  
Maike Krause ◽  
Herbert Schmidt

ABSTRACT Certain foodborne Shiga toxin-producing Escherichia coli (STEC) strains carry genes encoding the subtilase cytotoxin (SubAB). Although the mode of action of SubAB is under intensive investigation, information about the regulation of subAB gene expression is currently not available. In this study, we investigated the regulation of the chromosomal subAB1 gene in laboratory E. coli strain DH5α and STEC O113:H21 strain TS18/08 using a luciferase reporter gene assay. Special emphasis was given to the role of the global regulatory protein genes hfq and hns in subAB1 promoter activity. Subsequently, quantitative real-time PCR was performed to analyze the expression of Shiga toxin 2a (Stx2a), SubAB1, and cytolethal distending toxin V (Cdt-V) genes in STEC strain TS18/08 and its isogenic hfq and hns deletion mutants. The deletion of hfq led to a significant increase of up to 2-fold in subAB1 expression, especially in the late growth phase, in both strains. However, deletion of hns showed different effects on the promoter activity during the early and late exponential growth phases in both strains. Furthermore, upregulation of stx2a and cdt-V was demonstrated in hfq and hns deletion mutants in TS18/08. These data showed that the expression of subAB1, stx2a, and cdt-V is integrated in the regulatory network of global regulators Hfq and H-NS in Escherichia coli. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) strains are responsible for outbreaks of foodborne diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The pathogenicity of those strains can be attributed to, among other factors, the production of toxins. Recently, the subtilase cytotoxin was detected in locus of enterocyte effacement (LEE)-negative STEC, and it was confirmed that it contributes to the cytotoxicity of those STEC strains. Although the mode of action of SubAB1 is under intensive investigation, the regulation of gene expression is currently not known. The global regulatory proteins H-NS and Hfq have impact on many cellular processes and have been described to regulate virulence factors as well. Here, we investigate the role of hns and hfq in expression of subAB1 as well as stx2a and cdt-V in an E. coli laboratory strain as well as in wild-type STEC strain TS18/08.


Sign in / Sign up

Export Citation Format

Share Document