scholarly journals A New Subclass of Exoribonuclease-Resistant RNA Found in Multiple Genera of Flaviviridae

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Matthew J. Szucs ◽  
Parker J. Nichols ◽  
Rachel A. Jones ◽  
Quentin Vicens ◽  
Jeffrey S. Kieft

ABSTRACT Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5′ to 3′ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome’s 3′ untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae. IMPORTANCE The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research.

Author(s):  
Matthew J. Szucs ◽  
Parker J. Nichols ◽  
Rachel A. Jones ◽  
Quentin Vicens ◽  
Jeffrey S. Kieft

ABSTRACTViruses have developed innovative strategies to exploit the cellular machinery and overcome the host antiviral defenses, often using specifically structured RNA elements. Examples are found in flaviviruses; during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5’ to 3’ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease resistant RNA structure (xrRNA) located in the viral genome’s 3’untranslated region (UTR). Although known to exist in several Flaviviridae genera the full distribution and diversity of xRNAs in this virus family was unknown. Using the recent high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNA in the Pegivirus, Pestivirus, and Hepacivirus genera. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Our findings thus require adjustments of previous xrRNA classification schemes and expand on the previously known distribution of the xrRNA in Flaviviridae, indicating their widespread distribution and illustrating their importance.IMPORTANCEThe Flaviviridae comprise one of the largest families of positive sense single stranded (+ssRNA) and it is divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika Virus, Dengue Virus, and Powassan Virus. In these, a part of the virus’s RNA twists up into a very special three-dimensional shape called an xrRNA that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the virus’ RNA remains intact, and this protected part is important for viral infection. This was known to occur in Flaviviruses but whether it existed in the other members of the family was not known. In this study, we not only identified a new subclass of xrRNA found in Flavivirus but also in the remaining three genera. The fact that this process of viral RNA maturation exists throughout the entire Flaviviridae family makes it clear that this is an important but underappreciated part of the infection strategy of these diverse human pathogens.


2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document