scholarly journals Loss of GATA6 Leads to Nuclear Deformation and Aneuploidy in Ovarian Cancer

2009 ◽  
Vol 29 (17) ◽  
pp. 4766-4777 ◽  
Author(s):  
Callinice D. Capo-chichi ◽  
Kathy Q. Cai ◽  
Joseph R. Testa ◽  
Andrew K. Godwin ◽  
Xiang-Xi Xu

ABSTRACT A prominent hallmark of most human cancer is aneuploidy, which is a result of the chromosomal instability of cancer cells and is thought to contribute to the initiation and progression of most carcinomas. The developmentally regulated GATA6 transcription factor is commonly lost in ovarian cancer, and the loss of its expression is closely associated with neoplastic transformation of the ovarian surface epithelium. In the present study, we found that reduction of GATA6 expression with small interfering RNA (siRNA) in human ovarian surface epithelial cells resulted in deformation of the nuclear envelope, failure of cytokinesis, and formation of polyploid and aneuploid cells. We further discovered that loss of the nuclear envelope protein emerin may mediate the consequences of GATA6 suppression. The nuclear phenotypes were reproduced by direct suppression of emerin with siRNA. Thus, we conclude that diminished expression of GATA6 leads to a compromised nuclear envelope that is causal for polyploidy and aneuploidy in ovarian tumorigenesis. The loss of emerin may be the basis of nuclear morphological deformation and subsequently the cause of aneuploidy in ovarian cancer cells.

Author(s):  
Wenwei Xu ◽  
Roman Mezencev ◽  
Byungkyu Kim ◽  
Lijuan Wang ◽  
John McDonald ◽  
...  

Cancer cells undergo a variety of biochemical and biophysical transformations when compared to identical cells displaying a healthy phenotypic state, cancer cells show a drastic reduction of stiffness upon malignancy[1, 2] and change of stiffness of single cells can indicate the presence of disease [3–6]. Besides, metastatic cancer has a higher deformability than their benign counterparts[7, 8]. Using atomic force microscopy, we demonstrated that cancerous ovarian cells (OVCAR3, OVCAR4, HEY and HEYA8) are substantially softer than the healthy immortalized ovarian surface epithelium (IOSE) cells. In addition, within the different types of cancerous ovarian cells, increased invasiveness and migration are directly correlated with increased cell deformability. These results indicate that stiffness of individual cells can distinguish not only ovarian cancer cells from healthy cells types, but also invasive cancer types from less invasive types. Stiffness may provide an alternative and convenient biomarker to grade the metastasis potential of cancer cells.


2006 ◽  
Vol 1 (6) ◽  
pp. 2643-2649 ◽  
Author(s):  
Trevor G Shepherd ◽  
Brigitte L Thériault ◽  
Elizabeth J Campbell ◽  
Mark W Nachtigal

2006 ◽  
Vol 13 (2) ◽  
pp. 641-651 ◽  
Author(s):  
Jung-Hye Choi ◽  
Kyung-Chul Choi ◽  
Nelly Auersperg ◽  
Peter C K Leung

Although gonadotropin-releasing hormone (GnRH) has been shown to play a role as an autocrine/ paracrine regulator of cell growth in ovarian surface epithelium and ovarian cancer, the factors which regulate the expression of GnRH and its receptor in these cells are not well characterized. In the present study, we employed real-time PCR to determine the potential regulatory effect of gonadotropins on the expression levels of GnRH I (the mammalian GnRH), GnRH II (a second form of GnRH) and their common receptor (GnRHR) in immortalized ovarian surface epithelial (IOSE-80 and IOSE-80PC) cells and ovarian cancer cell lines (A2780, BG-1, CaOV-3, OVCAR-3 and SKOV-3). The cells were treated with increasing concentrations (100 and 1000 ng/ml) of recombinant follicle-stimulating hormone (FSH) or luteinizing hormone (LH) for 24 h. Treatment with FSH or LH reduced GnRH II mRNA levels in both IOSE cell lines and in three out of five ovarian cancer cell lines (A2780, BG-1 and OVCAR-3). A significant decrease in GnRHR mRNA levels was observed in IOSE and ovarian cancer cells, except CaOV-3 cells, following treatment with FSH or LH. In contrast, treatment with either FSH or LH had no effect on GnRH I mRNA levels in these cells, suggesting that gonadotropins regulate the two forms of GnRH and its receptor differentially. In separate experiments, the effect of gonadotropins on the anti-proliferative action of GnRH I and GnRH II agonists in IOSE-80, OVCAR-3 and SKOV-3 cells was investigated. The cells were pretreated with FSH or LH (100 ng/ml) for 24 h after which they were treated with either GnRH I or GnRH II (100 ng/ml) for 2 days, and cell growth was assessed by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide] assay. Pretreatment of the cells with FSH or LH significantly reversed the growth inhibitory effect of GnRH I and GnRH II agonists in these cell types. These results provide the first demonstration of a potential interaction between gonadotropins and the GnRH system in the growth regulation of normal ovarian surface epithelium and its neoplastic counterparts.


2005 ◽  
Vol 230 (6) ◽  
pp. 429-433 ◽  
Author(s):  
William J. Murdoch ◽  
Edward A. Van Kirk ◽  
Brenda M. Alexander

A cause-effect relationship between ovulation and common (surface) epithelial ovarian cancer has been suspected for many years. The ovarian surface epithelium apparently becomes exposed to genotoxins that are generated during the ovulatory process. Intensive egg-laying hens readily develop ovarian carcinomatosis. Indeed, elevated levels of potentially mutagenic 8-oxo-guanine adducts were detected in avian ovarian epithelial cells isolated from the apical surfaces and perimeters of pre-and postovulatory follicles, respectively. Internucleosomal DNA fragmentation indicative of apoptosis was evident in ovarian surface epithelial cells associated with the formative site of ovulation (stigma line) and regressive ruptured follicles. It is conceivable that a genetically altered progenitor cell with unrepaired DNA but not committed to death (i.e., a unifocal “escape”) could give rise to a transformed phenotype. Hence, the high rate of ovarian cancer in egg-laying hens could be the consequence of genomic damages to the ovarian surface epithelium associated with incessant ovulations, thereby increasing the likelihood of mutation and clonal expansion.


2015 ◽  
Vol 10 (9) ◽  
pp. 1457-1457 ◽  
Author(s):  
Trevor G Shepherd ◽  
Brigitte L Thériault ◽  
Elizabeth J Campbell ◽  
Mark W Nachtigal

2005 ◽  
Vol 98 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Molly Brewer ◽  
J. Taylor Wharton ◽  
Jian Wang ◽  
Amanda McWatters ◽  
Nelly Auersperg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document