Identification of rpo30, a vaccinia virus RNA polymerase gene with structural similarity to a eucaryotic transcription elongation factor

1990 ◽  
Vol 10 (10) ◽  
pp. 5433-5441
Author(s):  
B Y Ahn ◽  
P D Gershon ◽  
E V Jones ◽  
B Moss

Eucaryotic transcription factors that stimulate RNA polymerase II by increasing the efficiency of elongation of specifically or randomly initiated RNA chains have been isolated and characterized. We have identified a 30-kilodalton (kDa) vaccinia virus-encoded protein with apparent homology to SII, a 34-kDa mammalian transcriptional elongation factor. In addition to amino acid sequence similarities, both proteins contain C-terminal putative zinc finger domains. Identification of the gene, rpo30, encoding the vaccinia virus protein was achieved by using antibody to the purified viral RNA polymerase for immunoprecipitation of the in vitro translation products of in vivo-synthesized early mRNA selected by hybridization to cloned DNA fragments of the viral genome. Western immunoblot analysis using antiserum made to the vaccinia rpo30 protein expressed in bacteria indicated that the 30-kDa protein remains associated with highly purified viral RNA polymerase. Thus, the vaccinia virus protein, unlike its eucaryotic homolog, is an integral RNA polymerase subunit rather than a readily separable transcription factor. Further studies showed that the expression of rpo30 is regulated by dual early and later promoters.

1990 ◽  
Vol 10 (10) ◽  
pp. 5433-5441 ◽  
Author(s):  
B Y Ahn ◽  
P D Gershon ◽  
E V Jones ◽  
B Moss

Eucaryotic transcription factors that stimulate RNA polymerase II by increasing the efficiency of elongation of specifically or randomly initiated RNA chains have been isolated and characterized. We have identified a 30-kilodalton (kDa) vaccinia virus-encoded protein with apparent homology to SII, a 34-kDa mammalian transcriptional elongation factor. In addition to amino acid sequence similarities, both proteins contain C-terminal putative zinc finger domains. Identification of the gene, rpo30, encoding the vaccinia virus protein was achieved by using antibody to the purified viral RNA polymerase for immunoprecipitation of the in vitro translation products of in vivo-synthesized early mRNA selected by hybridization to cloned DNA fragments of the viral genome. Western immunoblot analysis using antiserum made to the vaccinia rpo30 protein expressed in bacteria indicated that the 30-kDa protein remains associated with highly purified viral RNA polymerase. Thus, the vaccinia virus protein, unlike its eucaryotic homolog, is an integral RNA polymerase subunit rather than a readily separable transcription factor. Further studies showed that the expression of rpo30 is regulated by dual early and later promoters.


2007 ◽  
Vol 27 (13) ◽  
pp. 4641-4651 ◽  
Author(s):  
Junjiang Fu ◽  
Ho-Geun Yoon ◽  
Jun Qin ◽  
Jiemin Wong

ABSTRACT P-TEFb, comprised of CDK9 and a cyclin T subunit, is a global transcriptional elongation factor important for most RNA polymerase II (pol II) transcription. P-TEFb facilitates transcription elongation in part by phosphorylating Ser2 of the heptapeptide repeat of the carboxy-terminal domain (CTD) of the largest subunit of pol II. Previous studies have shown that P-TEFb is subjected to negative regulation by forming an inactive complex with 7SK small RNA and HEXIM1. In an effort to investigate the molecular mechanism by which corepressor N-CoR mediates transcription repression, we identified HEXIM1 as an N-CoR-interacting protein. This finding led us to test whether the P-TEFb complex is regulated by acetylation. We demonstrate that CDK9 is an acetylated protein in cells and can be acetylated by p300 in vitro. Through both in vitro and in vivo assays, we identified lysine 44 of CDK9 as a major acetylation site. We present evidence that CDK9 is regulated by N-CoR and its associated HDAC3 and that acetylation of CDK9 affects its ability to phosphorylate the CTD of pol II. These results suggest that acetylation of CDK9 is an important posttranslational modification that is involved in regulating P-TEFb transcriptional elongation function.


1992 ◽  
Vol 12 (9) ◽  
pp. 4142-4152
Author(s):  
J Archambault ◽  
F Lacroute ◽  
A Ruet ◽  
J D Friesen

Little is known about the regions of RNA polymerase II (RNAPII) that are involved in the process of transcript elongation and interaction with elongation factors. One elongation factor, TFIIS, stimulates transcript elongation by binding to RNAPII and facilitating its passage through intrinsic pausing sites in vitro. In Saccharomyces cerevisiae, TFIIS is encoded by the PPR2 gene. Deletion of PPR2 from the yeast genome is not lethal but renders cells sensitive to the uracil analog 6-azauracil (6AU). Here, we show that mutations conferring 6AU sensitivity can also be isolated in the gene encoding the largest subunit of S. cerevisiae RNAPII (RPO21). A screen for mutations in RPO21 that confer 6AU sensitivity identified seven mutations that had been generated by either linker-insertion or random chemical mutagenesis. All seven mutational alterations are clustered within one region of the largest subunit that is conserved among eukaryotic RNAPII. The finding that six of the seven rpo21 mutants failed to grow at elevated temperature underscores the importance of this region for the functional and/or structural integrity of RNAPII. We found that the 6AU sensitivity of the rpo21 mutants can be suppressed by increasing the dosage of the wild-type PPR2 gene, presumably as a result of overexpression of TFIIS. These results are consistent with the proposal that in the rpo21 mutants, the formation of the RNAPII-TFIIS complex is rate limiting for the passage of the mutant enzyme through pausing sites. In addition to implicating a region of the largest subunit of RNAPII in the process of transcript elongation, our observations provide in vivo evidence that TFIIS is involved in transcription by RNAPII.


1998 ◽  
Vol 18 (10) ◽  
pp. 5771-5779 ◽  
Author(s):  
J. Cale Lennon ◽  
Megan Wind ◽  
Laura Saunders ◽  
M. Benjamin Hock ◽  
Daniel Reines

ABSTRACT Elongation factor SII interacts with RNA polymerase II and enables it to transcribe through arrest sites in vitro. The set of genes dependent upon SII function in vivo and the effects on RNA levels of mutations in different components of the elongation machinery are poorly understood. Using yeast lacking SII and bearing a conditional allele of RPB2, the gene encoding the second largest subunit of RNA polymerase II, we describe a genetic interaction between SII and RPB2. An SII gene disruption or therpb2-10 mutation, which yields an arrest-prone enzyme in vitro, confers sensitivity to 6-azauracil (6AU), a drug that depresses cellular nucleoside triphosphates. Cells with both mutations had reduced levels of total poly(A)+ RNA and specific mRNAs and displayed a synergistic level of drug hypersensitivity. In cells in which the SII gene was inactivated, rpb2-10 became dominant, as if template-associated mutant RNA polymerase II hindered the ability of wild-type polymerase to transcribe. Interestingly, while 6AU depressed RNA levels in both wild-type and mutant cells, wild-type cells reestablished normal RNA levels, whereas double-mutant cells could not. This work shows the importance of an optimally functioning elongation machinery for in vivo RNA synthesis and identifies an initial set of candidate genes with which SII-dependent transcription can be studied.


2009 ◽  
Vol 83 (23) ◽  
pp. 12018-12026 ◽  
Author(s):  
Zhilong Yang ◽  
Bernard Moss

ABSTRACT A multisubunit RNA polymerase (RPO) encoded by vaccinia virus (VACV), in conjunction with specific factors, transcribes early, intermediate, and late viral genes. However, an additional virus-encoded polypeptide referred to as the RPO-associated protein of 94 kDa (RAP94) is tightly bound to the RPO for the transcription of early genes. Unlike the eight RPO core subunits, RAP94 is synthesized exclusively at late times after infection. Furthermore, RAP94 is necessary for the packaging of RPO and other components needed for early transcription in assembling virus particles. The direct association of RAP94 with NPH I, a DNA-dependent ATPase required for transcription termination, and the multifunctional poly(A) polymerase small subunit/2′-O-methyltransferase/elongation factor was previously demonstrated. That RAP94 provides a structural and functional link between the core RPO and the VACV early transcription factor (VETF) has been suspected but not previously demonstrated. Using VACV recombinants that constitutively or inducibly express VETF subunits and RAP94 with affinity tags, we showed that (i) VETF associates only with RPO containing RAP94 in vivo and in vitro, (ii) the association of RAP94 with VETF requires both subunits of the latter, (iii) neither viral DNA nor other virus-encoded late proteins are required for the interaction of RAP94 with VETF and core RPO subunits, (iv) different domains of RAP94 bind VETF and core subunits of RPO, and (v) NPH I and VETF bind independently and possibly simultaneously to the N-terminal region of RAP94. Thus, RAP94 provides the bridge between the RPO and proteins needed for transcription initiation, elongation, and termination.


2009 ◽  
Vol 106 (17) ◽  
pp. 6956-6961 ◽  
Author(s):  
Karen Zhou ◽  
Wei Hung William Kuo ◽  
Jeffrey Fillingham ◽  
Jack F. Greenblatt

Elongation by RNA polymerase II (RNAPII) is a finely regulated process in which many elongation factors contribute to gene regulation. Among these factors are the polymerase-associated factor (PAF) complex, which associates with RNAPII, and several cyclin-dependent kinases, including positive transcription elongation factor b (P-TEFb) in humans and BUR kinase (Bur1–Bur2) and C-terminal domain (CTD) kinase 1 (CTDK1) in Saccharomyces cerevisiae. An important target of P-TEFb and CTDK1, but not BUR kinase, is the CTD of the Rpb1 subunit of RNAPII. Although the essential BUR kinase phosphorylates Rad6, which is required for histone H2B ubiquitination on K123, Rad6 is not essential, leaving a critical substrate(s) of BUR kinase unidentified. Here we show that BUR kinase is important for the phosphorylation in vivo of Spt5, a subunit of the essential yeast RNAPII elongation factor Spt4/Spt5, whose human orthologue is DRB sensitivity-inducing factor. BUR kinase can also phosphorylate the C-terminal region (CTR) of Spt5 in vitro. Like BUR kinase, the Spt5 CTR is important for promoting elongation by RNAPII and recruiting the PAF complex to transcribed regions. Also like BUR kinase and the PAF complex, the Spt5 CTR is important for histone H2B K123 monoubiquitination and histone H3 K4 and K36 trimethylation during transcription elongation. Our results suggest that the Spt5 CTR, which contains 15 repeats of a hexapeptide whose consensus sequence is S[T/A]WGG[A/Q], is a substrate of BUR kinase and a platform for the association of proteins that promote both transcription elongation and histone modification in transcribed regions.


2005 ◽  
Vol 25 (24) ◽  
pp. 10675-10683 ◽  
Author(s):  
Huimin Jiang ◽  
Fan Zhang ◽  
Takeshi Kurosu ◽  
B. Matija Peterlin

ABSTRACT Runx1 binds the silencer and represses CD4 transcription in immature thymocytes. In this study, we found that Runx1 inhibits P-TEFb, which contains CycT1, CycT2, or CycK and Cdk9 and stimulates transcriptional elongation by RNA polymerase II (RNAPII) in eukaryotic cells. Indeed, its inhibitory domain, spanning positions 371 to 411, not only bound CycT1 but was required for silencing CD4 transcription in vivo. Our chromatin immunoprecipitation assays revealed that Runx1 inhibits the elongation but not initiation of transcription and that RNAPII is engaged at the CD4 promoter but is unable to elongate in CD4− CD8+ thymoma cells. These results suggest that active repression by Runx1 occurs by blocking the elongation by RNAPII, which may contribute to CD4 silencing during T-cell development.


1992 ◽  
Vol 12 (9) ◽  
pp. 4142-4152 ◽  
Author(s):  
J Archambault ◽  
F Lacroute ◽  
A Ruet ◽  
J D Friesen

Little is known about the regions of RNA polymerase II (RNAPII) that are involved in the process of transcript elongation and interaction with elongation factors. One elongation factor, TFIIS, stimulates transcript elongation by binding to RNAPII and facilitating its passage through intrinsic pausing sites in vitro. In Saccharomyces cerevisiae, TFIIS is encoded by the PPR2 gene. Deletion of PPR2 from the yeast genome is not lethal but renders cells sensitive to the uracil analog 6-azauracil (6AU). Here, we show that mutations conferring 6AU sensitivity can also be isolated in the gene encoding the largest subunit of S. cerevisiae RNAPII (RPO21). A screen for mutations in RPO21 that confer 6AU sensitivity identified seven mutations that had been generated by either linker-insertion or random chemical mutagenesis. All seven mutational alterations are clustered within one region of the largest subunit that is conserved among eukaryotic RNAPII. The finding that six of the seven rpo21 mutants failed to grow at elevated temperature underscores the importance of this region for the functional and/or structural integrity of RNAPII. We found that the 6AU sensitivity of the rpo21 mutants can be suppressed by increasing the dosage of the wild-type PPR2 gene, presumably as a result of overexpression of TFIIS. These results are consistent with the proposal that in the rpo21 mutants, the formation of the RNAPII-TFIIS complex is rate limiting for the passage of the mutant enzyme through pausing sites. In addition to implicating a region of the largest subunit of RNAPII in the process of transcript elongation, our observations provide in vivo evidence that TFIIS is involved in transcription by RNAPII.


2020 ◽  
pp. jbc.RA120.015876
Author(s):  
Yating Wang ◽  
Liming Hou ◽  
M. Behfar Ardehali ◽  
Robert E. Kingston ◽  
Brian D Dynlacht

Elongin is an RNA polymerase II (RNAPII)-associated factor that has been shown to stimulate transcriptional elongation in vitro. The Elongin complex is thought to be required for transcriptional induction in response to cellular stimuli and to ubiquitinate RNAPII in response to DNA damage. Yet the impact of the Elongin complex on transcription in vivo has not been well studied. Here, we performed comprehensive studies of the role of Elongin A, the largest subunit of the Elongin complex, on RNAPII transcription genome-wide. Our results suggest that Elongin A localizes to actively transcribed regions and potential enhancers, and the level of recruitment correlated with transcription levels. We also identified a large group of factors involved in transcription as Elongin A-associated factors. In addition, we found that loss of Elongin A leads to dramatically reduced levels of Ser2-phosphorylated, but not total, RNAPII, and cells depleted of Elongin A show stronger promoter RNAPII pausing, suggesting that Elongin A may be involved in the release of paused RNAPII. Our RNA-seq studies suggest that loss of Elongin A did not alter global transcription, and unlike prior in vitro studies, we did not observe a dramatic impact on RNAPII elongation rates in our cell-based nascent RNA-seq experiments upon Elongin A depletion. Taken together, our studies provide the first comprehensive analysis of the role of Elongin A in regulating transcription in vivo. Our studies also revealed that unlike prior in vitro findings, depletion of Elongin A has little impact on global transcription profiles and transcription elongation in vivo.


2021 ◽  
Author(s):  
Ülkü Uzun ◽  
Thomas Brown ◽  
Harry Fischl ◽  
Andrew Angel ◽  
Jane Mellor

AbstractSpt4 is a transcription elongation factor, with homologues in organisms with nucleosomes. Structural and in vitro studies implicate Spt4 in transcription through nucleosomes, yet the in vivo function of Spt4 is unclear. Here we assessed the precise position of Spt4 during transcription and the consequences of loss of Spt4 on RNA polymerase II (RNAPII) dynamics and nucleosome positioning in Saccharomyces cerevisiae. In the absence of Spt4, the spacing between gene-body nucleosomes increases and RNAPII accumulates upstream of the nucleosomal dyad, most dramatically at nucleosome +2. Spt4 associates with elongating RNAPII early in transcription and its association dynamically changes depending on nucleosome positions. Together, our data show that Spt4 regulates early elongation dynamics, participates in co-transcriptional nucleosome positioning, and promotes RNAPII movement through the gene-body nucleosomes, especially the +2 nucleosome.


Sign in / Sign up

Export Citation Format

Share Document