scholarly journals Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcription-competent complex.

1990 ◽  
Vol 10 (12) ◽  
pp. 6335-6347 ◽  
Author(s):  
E Maldonado ◽  
I Ha ◽  
P Cortes ◽  
L Weis ◽  
D Reinberg

Human transcription factor TFIID, the TATA-binding protein, was partially purified to a form capable of associating stably with the TATA motif of the adenovirus major late promoter. Binding of the human and yeast TFIID to the TATA motif was stimulated by TFIIA. TFIIA is an integral part of a complex capable of binding other transcription factors. A complex formed with human TFIID and TFIIA (DA complex) was specifically recognized by TFIIB. We found that TFIIB activity was contained in a single polypeptide of 32 kDa and that this polypeptide participated in transcription and was capable of binding to the DA complex to form the DAB complex. Formation of the DAB complex required TFIIA, TFIID, and sequences downstream of the transcriptional start site; however, the DA complex could be formed on an oligonucleotide containing only the adenovirus major late promoter TATA motif. Using anti-TFIIB antibodies and reagents that affect the stability of a transcription-competent complex, we found that yeast and human TFIID yielded DAB complexes with different stabilities.

1990 ◽  
Vol 10 (12) ◽  
pp. 6335-6347
Author(s):  
E Maldonado ◽  
I Ha ◽  
P Cortes ◽  
L Weis ◽  
D Reinberg

Human transcription factor TFIID, the TATA-binding protein, was partially purified to a form capable of associating stably with the TATA motif of the adenovirus major late promoter. Binding of the human and yeast TFIID to the TATA motif was stimulated by TFIIA. TFIIA is an integral part of a complex capable of binding other transcription factors. A complex formed with human TFIID and TFIIA (DA complex) was specifically recognized by TFIIB. We found that TFIIB activity was contained in a single polypeptide of 32 kDa and that this polypeptide participated in transcription and was capable of binding to the DA complex to form the DAB complex. Formation of the DAB complex required TFIIA, TFIID, and sequences downstream of the transcriptional start site; however, the DA complex could be formed on an oligonucleotide containing only the adenovirus major late promoter TATA motif. Using anti-TFIIB antibodies and reagents that affect the stability of a transcription-competent complex, we found that yeast and human TFIID yielded DAB complexes with different stabilities.


1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


1991 ◽  
Vol 11 (3) ◽  
pp. 1195-1206 ◽  
Author(s):  
E Bengal ◽  
O Flores ◽  
A Krauskopf ◽  
D Reinberg ◽  
Y Aloni

We have used a recently developed system that allows the isolation of complexes competent for RNA polymerase II elongation (E. Bengal, A. Goldring, and Y. Aloni, J. Biol. Chem. 264:18926-18932, 1989). Pulse-labeled transcription complexes were formed at the adenovirus major late promoter with use of HeLa cell extracts. Elongation-competent complexes were purified from most of the proteins present in the extract, as well as from loosely bound elongation factors, by high-salt gel filtration chromatography. We found that under these conditions the nascent RNA was displaced from the DNA during elongation. These column-purified complexes were used to analyze the activities of different transcription factors during elongation by RNA polymerase II. We found that transcription factor IIS (TFIIS), TFIIF, and TFIIX affected the efficiency of elongation through the adenovirus major late promoter attenuation site and a synthetic attenuation site composed of eight T residues. These factors have distinct activities that depend on whether they are added before RNA polymerase has reached the attenuation site or at the time when the polymerase is pausing at the attenuation site. TFIIS was found to have antiattenuation activity, while TFIIF and TFIIX stimulated the rate of elongation. In comparison with TFIIF, TFIIS is loosely bound to the elongation complex. We also found that the activities of the factors are dependent on the nature of the attenuator. These results indicate that at least three factors play a major role during elongation by RNA polymerase II.


1990 ◽  
Vol 68 (6) ◽  
pp. 949-956 ◽  
Author(s):  
Peter Zahradka ◽  
Dawn E. Larson ◽  
Bruce H. Sells

The presence of specific promoter elements, notably the TATA and GC boxes, has been useful for categorizing genes transcribed by RNA polymerase II. The gene for the murine ribosomal protein (r-protein) L32 lacks both of these elements, although it has GC-rich regions. The conditions required for its optimal synthesis in vitro, however, resemble the properties of promoters containing TATA (adenovirus major late promoter) rather than GC boxes (dihydrofolate reductase). To further investigate the relationship of the r-protein gene to different promoter elements, transcription competition analyses were used to distinguish the presence of common protein-binding sequences. The low levels of competition observed by either the adenovirus major late promoter or dihydrofolate reductase promoter with the r-protein gene promoter resulted from general transcription factors present in each initiation complex. Competition by factors binding to common sequence elements was not observed, indicating the r-protein L32 gene possesses elements distinct from those present in the other genes examined.Key words: ribosomal protein gene, gene promoter, cell-free transcription.


1988 ◽  
Vol 8 (4) ◽  
pp. 1602-1613 ◽  
Author(s):  
Z F Burton ◽  
M Killeen ◽  
M Sopta ◽  
L G Ortolan ◽  
J Greenblatt

We have previously shown by affinity chromatography that RAP30 and RAP74 are the mammalian proteins that have the highest affinity for RNA polymerase II. Here we show that RAP30 binds to RAP74 and that the RAP30-RAP74 complex (RAP30/74) is required for accurate initiation by RNA polymerase II. RAP30/74 is required for accurate transcription from the following promoters: the adenovirus major late promoter, the long terminal repeat of human immunodeficiency virus, P2 of the human c-myc gene, the mouse beta maj-globin promoter (all of which have TATA boxes), and the mouse dihydrofolate reductase promoter (which lacks a TATA box). RAP30/74 is not required for initiation by RNA polymerase III at the adenovirus virus-associated RNA promoters. Therefore, RAP30/74 is a general initiation factor that binds to RNA polymerase II.


Sign in / Sign up

Export Citation Format

Share Document