scholarly journals Association of catalytic and regulatory subunits of cyclic AMP-dependent protein kinase requires a negatively charged side group at a conserved threonine.

1990 ◽  
Vol 10 (3) ◽  
pp. 1066-1075 ◽  
Author(s):  
L R Levin ◽  
M J Zoller

In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.

1990 ◽  
Vol 10 (3) ◽  
pp. 1066-1075
Author(s):  
L R Levin ◽  
M J Zoller

In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.


1993 ◽  
Vol 13 (4) ◽  
pp. 2332-2341
Author(s):  
R A Steinberg ◽  
R D Cauthron ◽  
M M Symcox ◽  
H Shuntoh

We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.


1991 ◽  
Vol 11 (2) ◽  
pp. 705-712 ◽  
Author(s):  
R A Steinberg

Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.


1991 ◽  
Vol 11 (2) ◽  
pp. 705-712
Author(s):  
R A Steinberg

Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.


1990 ◽  
Vol 270 (1) ◽  
pp. 181-188 ◽  
Author(s):  
G Schwoch ◽  
B Trinczek ◽  
C Bode

Observation and quantification of the catalytic subunit C of cyclic AMP-dependent protein kinases by immuno-gold electron microscopy suggested a high concentration of cyclic AMP-dependent protein kinases in mitochondria from liver, kidney, heart and skeletal muscle, pancreas, parotid gland and brain cells. The position of gold particles pointed to a localization in the inner membrane/matrix space. A similar distribution was obtained by immunolocalization of the cyclic AMP-dependent protein kinase regulatory subunits RI and RII in liver, pancreas and heart cells. The results indicated the presence of both the type I and the type II cyclic AMP-dependent protein kinases in mitochondria of hepatocytes, and the preferential occurrence of the type I protein kinase in mitochondria from exocrine pancreas and heart muscle. The immunocytochemical results were confirmed by immunochemical determination of cyclic AMP-dependent protein kinase subunits in fractionated tissues. Determinations by e.l.i.s.a. of the C-subunit in parotid gland cell fractions indicated about a 4-fold higher concentration of C-subunit in the mitochondria than in a crude 1200 g supernatant. Immunoblot analysis of subfractions from liver mitochondria supported the localization in situ of cyclic AMP-dependent protein kinases in the inner membrane/matrix space and suggested that the type I enzyme is anchored by its regulatory subunit to the inner membrane. In accordance with the immunoblot data, the specific activity of cyclic AMP-dependent protein kinase measured in the matrix fraction was about twice that measured in whole mitochondria. These findings indicate the importance of cyclic AMP-dependent protein kinases in the regulation of mitochondrial functions.


1984 ◽  
Vol 217 (3) ◽  
pp. 633-639 ◽  
Author(s):  
M Seville ◽  
P J England ◽  
J J Holbrook

The C-subunit of type II cyclic AMP-dependent protein kinase from bovine heart was labelled with the fluorophore fluorescamine (FAM). The association of the dye-labelled subunit (CFAM) with the R-subunit isolated from the same source was monitored by fluorescence polarization spectroscopy. The stoichiometry of C to R in the final complex was close to 1:1. The affinity of the two subunits could be described by a dissociation constant in the nanomolar range. Holoenzyme (formed from CFAM and R) was titrated with cyclic AMP, and the changes in fluorescence anisotropy, due to dissociation of the holoenzyme, recorded. The titration curves were analysed in terms of a model which required computer simulation. Cyclic AMP-induced dissociation proceeds via one or more ternary complexes, and all four cyclic AMP-binding sites on the R-dimer are accessible in the holoenzyme. The dissociation constants describing the release of the C-subunits from the two ternary complexes containing four cyclic AMP molecules were both approx. 9 microM. The binding of two cyclic AMP molecules to protein kinase is necessary and sufficient to cause the dissociation of both C-subunits. The state of association at ‘in vivo’ concentrations of protein and cyclic AMP is discussed.


1993 ◽  
Vol 13 (4) ◽  
pp. 2332-2341 ◽  
Author(s):  
R A Steinberg ◽  
R D Cauthron ◽  
M M Symcox ◽  
H Shuntoh

We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.


1992 ◽  
Vol 12 (4) ◽  
pp. 1507-1514
Author(s):  
C L Denis ◽  
S C Fontaine ◽  
D Chase ◽  
B E Kemp ◽  
L T Bemis

Four ADR1c mutations that occur close to Ser-230 of the Saccharomyces cerevisiae transcriptional activator ADR1 and which greatly enhance the ability of ADR1 to activate ADH2 expression under glucose-repressed conditions have been shown to reduce or eliminate cyclic AMP-dependent protein kinase (cAPK) phosphorylation of Ser-230 in vitro. In addition, unregulated cAPK expression in vivo blocks ADH2 depression in an ADR1-dependent fashion in which ADR1c mutations display decreased sensitivity to unregulated cAPK activity. Taken together, these data have suggested that ADR1c mutations enhance ADR1 activity by blocking cAPK phosphorylation and inactivation of Ser-230. We have isolated and characterized an additional 17 ADR1c mutations, defining 10 different amino acid changes, that were located in the region defined by amino acids 227 through 239 of ADR1. Three observations, however, indicate that the ADR1c phenotype is not simply equivalent to a lack of cAPK phosphorylation. First, only some of these newly isolated ADR1c mutations affected the ability of yeast cAPK to phosphorylate corresponding synthetic peptides modeled on the 222 to 234 region of ADR1 in vitro. Second, we observed that strains lacking cAPK activity did not display enhanced ADH2 expression under glucose growth conditions. Third, when Ser-230 was mutated to a nonphosphorylatable residue, lack of cAPK activity led to a substantial increase in ADH2 expression under glucose-repressed conditions. Thus, while cAPK controls ADH2 expression and ADR1 is required for this control, cAPK acts by a mechanism that is independent of effects on ADR1 Ser-230. It was also observed that deletion of the ADR1c region resulted in an ADR1c phenotype. The ADR1c region is, therefore, involved in maintaining ADR1 in an inactive form. ADR1c mutations may block the binding of a repressor to ADR1 or alter the structure of ADR1 so that transcriptional activation regions become unmasked.


1992 ◽  
Vol 12 (10) ◽  
pp. 4478-4485 ◽  
Author(s):  
L Li ◽  
R Heller-Harrison ◽  
M Czech ◽  
E N Olson

Differentiation of skeletal muscle cells is inhibited by the cyclic AMP (cAMP) signal transduction pathway. Here we report that the catalytic subunit of cAMP-dependent protein kinase (PKA) can substitute for cAMP and suppress muscle-specific transcription by silencing the activity of the MyoD family of regulatory factors, which includes MyoD, myogenin, myf5, and MRF4. Repression by the PKA catalytic (C) subunit is directed at the consensus sequence CANNTG, the target for DNA binding and transcriptional activation by these myogenic regulators. Phosphopeptide mapping of myogenin in vitro and in vivo revealed two PKA phosphorylation sites, both within the basic region. However, repression of myogenin function by PKA does not require direct phosphorylation of these sites but instead involves an indirect mechanism with one or more intermediate steps. Regulation of the transcriptional activity of the MyoD family by modulation of the cAMP signaling pathway may account for the inhibitory effects of certain peptide growth factors on muscle-specific gene expression and may also determine the responsiveness of different cell types to myogenic conversion by these myogenic regulators.


1987 ◽  
Vol 7 (4) ◽  
pp. 1371-1377 ◽  
Author(s):  
T Toda ◽  
S Cameron ◽  
P Sass ◽  
M Zoller ◽  
J D Scott ◽  
...  

We have cloned a gene (BCY1) from the yeast Saccharomyces cerevisiae that encodes a regulatory subunit of the cyclic AMP-dependent protein kinase. The encoded protein has a structural organization similar to that of the RI and RII regulatory subunits of the mammalian cyclic AMP-dependent protein kinase. Strains of S. cerevisiae with disrupted BCY1 genes do not display a cyclic AMP-dependent protein kinase in vitro, fail to grow on many carbon sources, and are exquisitely sensitive to heat shock and starvation.


Sign in / Sign up

Export Citation Format

Share Document