scholarly journals Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197.

1993 ◽  
Vol 13 (4) ◽  
pp. 2332-2341 ◽  
Author(s):  
R A Steinberg ◽  
R D Cauthron ◽  
M M Symcox ◽  
H Shuntoh

We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.

1993 ◽  
Vol 13 (4) ◽  
pp. 2332-2341
Author(s):  
R A Steinberg ◽  
R D Cauthron ◽  
M M Symcox ◽  
H Shuntoh

We recently found, using cultured mouse cell systems, that newly synthesized catalytic (C) subunits of cyclic AMP-dependent protein kinase undergo a posttranslational modification that reduces their electrophoretic mobilities in sodium dodecyl sulfate (SDS)-polyacrylamide gels and activates them for binding to a Sepharose-conjugated inhibitor peptide. Using an Escherichia coli expression system, we now show that recombinant murine C alpha subunit undergoes a similar modification and that the modification results in a large increase in protein kinase activity. Threonine phosphorylation appears to be responsible for both the enzymatic activation and the electrophoretic mobility shift. The phosphothreonine-deficient form of C subunit had reduced affinities for the ATP analogs p-fluorosulfonyl-[14C]benzoyl 5'-adenosine and adenosine 5'-O-(3-thiotriphosphate) as well as for the Sepharose-conjugated inhibitor peptide; it also had markedly elevated Kms for both ATP and peptide substrates. Autophosphorylation of C-subunit preparations enriched for this phosphothreonine-deficient form reproduced the changes in enzyme activity and SDS-gel mobility that occur in intact cells. A mutant form of the recombinant C subunit with Ala substituted for Thr-197 (the only C-subunit threonine residue known to be phosphorylated in mammalian cells) was similar in SDS-polyacrylamide gel electrophoresis mobility and activity to the phosphothreonine-deficient form of wild-type C subunit. In contrast to the wild-type subunit, however, the Ala-197 mutant form could not be shifted or activated by incubation with the phosphothreonine-containing wild-type form. We conclude that posttranslational autophosphorylation of Thr-197 is a critical step in intracellular expression of active C subunit.


1991 ◽  
Vol 11 (2) ◽  
pp. 705-712 ◽  
Author(s):  
R A Steinberg

Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.


1991 ◽  
Vol 11 (2) ◽  
pp. 705-712
Author(s):  
R A Steinberg

Kinase-negative mutants of S49 mouse lymphoma cells, which lack detectable catalytic (C) subunit of cyclic AMP-dependent protein kinase, nevertheless contain cytoplasmic mRNAs for the two major forms of C subunit, C alpha and C beta. Investigation of the metabolism of C subunits in wild-type and mutant cells was undertaken to identify the step(s) at which C subunit expression was defective in kinase-negative cells. [35S]methionine-labeled C subunits from cytosolic fractions of wild-type S49 cells or C subunit-overexpressing cell lines were visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis after purification by either affinity chromatography using a peptide inhibitor of C subunit as the ligand or immunoadsorption with an anti-C subunit antiserum. Immunoadsorption revealed electrophoretic forms of C alpha and C beta subunits that migrated faster than those detected in affinity-purified samples; this unexpected heterogeneity suggested that functional activation of C subunit may require posttranslational modification. Immunoadsorption of cytosolic fractions from wild-type cells labeled for various times with [35S]methionine revealed an additional posttranslational maturation step. The bulk of immunoadsorbable C subunit label in cells pulse-labeled for 5 min or less was in an insoluble fraction from which it could be solubilized with a detergent-containing buffer; solubilization of the newly synthesized material proceeded over an incubation period of about 10 min. The primary defect in kinase-negative cells appeared to be in this solubilization step, since about equal C subunit radioactivity was found in detergent extracts of wild-type and kinase-negative cells but very little was found in mutant cytosols. I speculate that an accessory factor required for proper folding of newly synthesized C subunit in defective in the kinase-negative cells.


1990 ◽  
Vol 10 (3) ◽  
pp. 1066-1075
Author(s):  
L R Levin ◽  
M J Zoller

In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.


1990 ◽  
Vol 10 (3) ◽  
pp. 1066-1075 ◽  
Author(s):  
L R Levin ◽  
M J Zoller

In Saccharomyces cerevisiae, as in higher eucaryotes, cyclic AMP (cAMP)-dependent protein kinase is a tetramer composed of two catalytic (C) subunits and two regulatory (R) subunits. In the absence of cAMP, the phosphotransferase activity of the C subunit is inhibited by the tight association with R. Mutation of Thr-241 to Ala in the C1 subunit of S. cerevisiae reduces the affinity of this subunit for the R subunit approximately 30-fold and results in a monomeric cAMP-independent C subunit. The analogous residue in the mammalian C subunit is known to be phosphorylated. Peptide maps of in vivo 32P-labeled wild-type C1 and mutant C1(Ala241) suggest that Thr-241 is phosphorylated in yeast cells. Substituting Thr-241 with either aspartate or glutamate partially restored affinity for the R subunit. Uncharged and positively charged residues substituted at this site resulted in C subunits that failed to associate with the R subunit. Replacement with the phosphorylatable residue serine resulted in a C subunit with wild-type affinity for the R subunit. Analysis of this protein revealed that it appears to be phosphorylated on Ser-241 in vivo. These data suggest that the interaction between R and C involves a negatively charged phosphothreonine at position 241 of yeast C1, which can be mimicked by either aspartate, glutamate, or phosphoserine.


1973 ◽  
Vol 136 (4) ◽  
pp. 993-998 ◽  
Author(s):  
Malcolm C. Richardson ◽  
Dennis Schulster

A method has been developed for investigation of the effect of adrenocorticotrophic hormone (ACTH) on the state of activation of a cyclic AMP-dependent protein kinase within cells of the adrenal cortex. Enzyme activity was measured in terms of the quantity of32P transferred from [γ-32P]ATP to histone under conditions in which bound cyclic AMP did not dissociate from the regulatory subunit of the protein kinase ACTH (1×10-2i.u./ml) caused a rapid and complete activation of the cyclic AMP-dependent protein kinase activity within 2min of hormone addition to the isolated cells. In response to a range of ACTH concentrations a sigmoid log dose–response curve for protein kinase activation was obtained, with half-maximal stimulation attained at about 1×10-3i.u./ml. However, some low doses of ACTH that elicited a marked (but submaximal) steroidogenic response failed to cause a clear stimulation of protein kinase activity in isolated adrenal cells. Theophylline (2mm) potentiated the effect of ACTH on protein kinase activity. The results implicate an important role for protein kinase in ACTH action on the adrenocortical cell.


1977 ◽  
Vol 162 (2) ◽  
pp. 379-386 ◽  
Author(s):  
K M Gautvik ◽  
E Walaas ◽  
O Walaas

1. The effects of thyroliberin were studied in cultured rat pituitary-tumour cells that synthesize and secrete prolactin (the GH4C1 cell strain). 2. Prolactin and cyclic AMP were measured by radioimmunological methods, and a cyclic AMP-dependent protein kinase was characterized by using histone as substrate. 3. Prolactin release was studied after 5-60min of treatment, and synthesis after 48h of treatment with thyroliberin. One-half maximum stimulation of release and synthesis were observed at 0.25 and at 4nM respectively. 4. Cyclic AMP was temporarily increased in cell suspensions after treatment with thyroliberin, and one-half maximum stimulation was observed at 25nM. 5. Dibutyryl cyclic AMP increased prolactin release and synthesis, one-half maximum effects being obtained at 20 micronM. 6. A cyclic AMP-dependent protein kinase, which was one-half maximally stimulated at 30 nM-cyclic AMP, was demonstrated. 7. An increase in the activity ratio (-cyclic AMP/+cyclic AMP) of the cyclic AMP-dependent protein kinase was observed after treatment with thyroliberin. Total protein kinase activity in the presence of cyclic AMP was unaltered. The time-course of enzyme activation was similar to that of cyclic AMP formation and corresponded to the time when prolactin release was first observed. 8. It is concluded that thyroliberin induces cyclic AMP formation, resulting in the activation of a cyclic AMP-dependent protein kinase.


1990 ◽  
Vol 10 (6) ◽  
pp. 2931-2940
Author(s):  
S Osawa ◽  
L E Heasley ◽  
N Dhanasekaran ◽  
S K Gupta ◽  
C W Woon ◽  
...  

G-proteins couple hormonal activation of receptors to the regulation of specific enzymes and ion channels. Gs and Gi are G-proteins which regulate the stimulation and inhibition, respectively, of adenylyl cyclase. We have constructed two chimeric cDNAs in which different lengths of the alpha subunit of Gs (alpha s) have been replaced with the corresponding sequence of the Gi alpha subunit (alpha i2). One chimera, referred to as alpha i(54)/s' replaces the NH2-terminal 61 amino acids of alpha s with the first 54 residues of alpha i. Within this sequence there are 7 residues unique to alpha s, and 16 of the remaining 54 amino acids are nonhomologous between alpha i and alpha s. The second chimera, referred to as alpha i/s(Bam), replaces the first 234 amino acids of alpha s with the corresponding 212 residues of alpha i. Transient expression of alpha i(54)/s in COS-1 cells resulted in an 18- to 20-fold increase in cyclic AMP (cAMP) levels, whereas expression of either alpha i/s(Bam) or the wild-type alpha s polypeptide resulted in only a 5- to 6-fold increase in cellular cAMP levels. COS-1 cells transfected with alpha i showed a small decrease in cAMP levels. Stable expression of the chimeric alpha i(54)/s polypeptide in Chinese hamster ovary (CHO) cells constitutively increased both cAMP synthesis and cAMP-dependent protein kinase activity. CHO clones expressing transfected alpha i/s(Bam) or the wild-type alpha s and alpha i cDNAs exhibited cAMP levels and cAMP-dependent protein kinase activities similar to those in control CHO cells. Therefore, the alpha i(54)/s chimera behaves as a constitutively active alpha s polypeptide, whereas the alpha i/s(Bam) polypeptide is regulated similarly to wild-type alpha s. Expression in cyc-S49 cells, which lack expression of wild-type alpha s, confirmed that the alpha i(54)/s polypeptide is a highly active alpha s molecule whose robust activity is independent of any change in intrinsic GTPase activity. The difference in phenotypes observed upon expression of alpha i(54)/s or alpha i/s(Bam) indicates that the NH2-terminal moieties of alpha s and alpha i function as attenuators of the effector enzyme activator domain which is within the COOH-terminal half of the alpha subunit. Mutation at the NH2 terminus of alpha s relieves the attenuator control of the Gs protein and results in a dominant active G-protein mutant.


1991 ◽  
Vol 11 (6) ◽  
pp. 3369-3373
Author(s):  
R B Wilson ◽  
A A Brenner ◽  
T B White ◽  
M J Engler ◽  
J P Gaughran ◽  
...  

The Saccharomyces cerevisiae SRK1 gene, when expressed on a low-copy shuttle vector, partially suppresses the phenotype associated with elevated levels of cyclic AMP-dependent protein kinase activity and suppresses the temperature-sensitive cell cycle arrest of the ins1 mutant. SRK1 is located on chromosome IV, 3 centimorgans from gcn2. A mutant carrying a deletion mutation in srk1 is viable. SRK1 encodes a 140-kDa protein with homology to the dis3+ protein from Schizosaccharomyces pombe. The ability of SRK1 to alleviate partially the defects caused by high levels of cyclic AMP-dependent protein kinase and the similarity of its encoded protein to dis3+ suggest that SRK1 may have a role in protein phosphatase function.


Sign in / Sign up

Export Citation Format

Share Document