scholarly journals Transcription of the procyclic acidic repetitive protein genes of Trypanosoma brucei.

1990 ◽  
Vol 10 (6) ◽  
pp. 3036-3047 ◽  
Author(s):  
C E Clayton ◽  
J P Fueri ◽  
J E Itzhaki ◽  
V Bellofatto ◽  
D R Sherman ◽  
...  

The procyclic acidic repetitive protein (parp) genes of Trypanosoma brucei encode a small family of abundant surface proteins whose expression is restricted to the procyclic form of the parasite. They are found at two unlinked loci, parpA and parpB; transcription of both loci is developmentally regulated. The region of homology upstream of the A and B parp genes is only 640 base pairs long and may contain sequences responsible for transcriptional initiation and regulation. Transcription upstream of this putative promoter region is not developmentally regulated and is much less active than that of the parp genes; the polymerase responsible is inhibited by alpha-amanitin, whereas that transcribing the parp genes is not. Transcription of the parp genes is strongly stimulated by low levels of UV irradiation. The putative parp promoter, when placed upstream of the chloramphenicol acetyltransferase gene, is sufficient to cause production of chloramphenicol acetyltransferase in a T. brucei DNA transformation assay. Taken together, these results suggest that a promoter for an alpha-amanitin-resistant RNA polymerase lies less than 600 nucleotides upstream of the parp genes.

1990 ◽  
Vol 10 (6) ◽  
pp. 3036-3047
Author(s):  
C E Clayton ◽  
J P Fueri ◽  
J E Itzhaki ◽  
V Bellofatto ◽  
D R Sherman ◽  
...  

The procyclic acidic repetitive protein (parp) genes of Trypanosoma brucei encode a small family of abundant surface proteins whose expression is restricted to the procyclic form of the parasite. They are found at two unlinked loci, parpA and parpB; transcription of both loci is developmentally regulated. The region of homology upstream of the A and B parp genes is only 640 base pairs long and may contain sequences responsible for transcriptional initiation and regulation. Transcription upstream of this putative promoter region is not developmentally regulated and is much less active than that of the parp genes; the polymerase responsible is inhibited by alpha-amanitin, whereas that transcribing the parp genes is not. Transcription of the parp genes is strongly stimulated by low levels of UV irradiation. The putative parp promoter, when placed upstream of the chloramphenicol acetyltransferase gene, is sufficient to cause production of chloramphenicol acetyltransferase in a T. brucei DNA transformation assay. Taken together, these results suggest that a promoter for an alpha-amanitin-resistant RNA polymerase lies less than 600 nucleotides upstream of the parp genes.


1990 ◽  
Vol 10 (7) ◽  
pp. 3492-3504 ◽  
Author(s):  
G Rudenko ◽  
S Le Blancq ◽  
J Smith ◽  
M G Lee ◽  
A Rattray ◽  
...  

At least one of the procyclic acidic repetitive protein (PARP or procyclin) loci of Trypanosoma brucei is a small (5- to 6-kilobase) polycistronic transcription unit which is transcribed in an alpha-amanitin-resistant manner. Its single promoter, as mapped by run-on transcription analysis and UV inactivation of transcription, is located immediately upstream of the first alpha-PARP gene. Transcription termination occurs in a region approximately 3 kilobases downstream of the beta-PARP gene. The location of the promoter was confirmed by its ability to direct transcription of the bacterial chloramphenicol acetyltransferase gene in insect-form (procyclic) T. brucei. The putative PARP promoter is located in the region between the 3' splice acceptor site (nucleotide position 0) and nucleotide position -196 upstream of the alpha-PARP genes. Regulatory regions influencing the levels of PARP expression may be located further upstream. We conclude that a single promoter, which is located very close to the 3' splice acceptor site of the alpha-PARP genes, directs the transcription of a small, polycistronic, and alpha-amanitin-resistant transcription unit.


1989 ◽  
Vol 9 (3) ◽  
pp. 1332-1335 ◽  
Author(s):  
M R Mowatt ◽  
G S Wisdom ◽  
C E Clayton

The procyclic acidic repetitive proteins (PARPs) of Trypanosoma brucei are developmentally regulated surface proteins encoded by a family of polymorphic genes. We have determined the complete nucleotide sequence of a novel member of the PARP gene family and investigated its expression. The amino acid sequence deduced from the parpA alpha gene showed a marked conservation of both the amino- and carboxy-terminal regions compared with other PARPs but revealed the substitution of a pentapeptide for the dipeptide repeating unit that is characteristic of all other PARPs. Northern hybridization analysis indicated that expression of the parpA alpha gene, like that of other members of this gene family, is confined to the procyclic stage of the T. brucei life cycle. This result implies coordinate regulation of the unlinked genetic loci that encode PARPs.


2005 ◽  
Vol 4 (5) ◽  
pp. 971-980 ◽  
Author(s):  
Belinda S. Hall ◽  
Emma Smith ◽  
Wolfram Langer ◽  
Louisa A. Jacobs ◽  
David Goulding ◽  
...  

ABSTRACT In Trypanosoma brucei, endocytosis is developmentally regulated and is substantially more active in the mammalian infective stage, where it likely plays a role in immune evasion. The small GTPase TbRAB11 is highly expressed in the mammalian stage and mediates recycling of glycosylphosphatidylinositol-anchored proteins, including the variant surface glycoprotein (VSG) and the transferrin receptor, plus trafficking of internalized anti-VSG antibody and transferrin. No function has been assigned to TbRAB11 in the procyclic (insect) stage trypanosome. The importance of TbRAB11 to both bloodstream and procyclic form viability was assessed by RNA interference (RNAi). Suppression of TbRAB11 in the bloodstream form was rapidly lethal and led to cells with round morphology and an enlarged flagellar pocket. TbRAB11 RNAi was also lethal in procyclic forms, which also became rounded, but progression to cell death was significantly slower and the flagellar pocket remained normal. In bloodstream forms, silencing of TbRAB11 had no effect on exocytosis of newly synthesized VSG, fluid-phase endocytosis, or transferrin uptake, but export of internalized transferrin was inhibited. Lectin endocytosis assays revealed a block to postendosomal transport mediated by suppressing TbRAB11. By contrast, in procyclic forms, depletion of TbRAB11 blocks both fluid-phase endocytosis and internalization of surface proteins. In normal bloodstream forms, most VSG is recycled, but in procyclics, internalized surface proteins accumulated in the lysosome. These data demonstrate that TbRAB11 controls recycling and is essential in both life stages of T. brucei but that its primary role is subject to developmental variation.


1987 ◽  
Vol 7 (2) ◽  
pp. 951-955 ◽  
Author(s):  
A Klarsfeld ◽  
P Daubas ◽  
B Bourachot ◽  
J P Changeux

The 5' end and promoter region of the alpha-subunit gene of chicken muscle acetylcholine receptor was mapped and sequenced. It includes a TATA and a CAAT box and a potential Sp1-binding site. When inserted in front of the chloramphenicol acetyltransferase gene, this promoter (including 850 base pairs of upstream sequence) directed high transient chloramphenicol acetyltransferase expression in transfected mouse C2.7 myotubes but not in C2.7 myoblasts or nonmyogenic 3T6 cells.


1987 ◽  
Vol 7 (2) ◽  
pp. 951-955
Author(s):  
A Klarsfeld ◽  
P Daubas ◽  
B Bourachot ◽  
J P Changeux

The 5' end and promoter region of the alpha-subunit gene of chicken muscle acetylcholine receptor was mapped and sequenced. It includes a TATA and a CAAT box and a potential Sp1-binding site. When inserted in front of the chloramphenicol acetyltransferase gene, this promoter (including 850 base pairs of upstream sequence) directed high transient chloramphenicol acetyltransferase expression in transfected mouse C2.7 myotubes but not in C2.7 myoblasts or nonmyogenic 3T6 cells.


1989 ◽  
Vol 9 (10) ◽  
pp. 4170-4178
Author(s):  
S B Hopkinson ◽  
R S Pollenz ◽  
I Drummond ◽  
R L Chisholm

We have characterized a cDNA and the corresponding gene for a cyclic AMP-inducible gene expressed during Dictyostelium development. This gene, BP74, was found to be first expressed about the time of aggregate formation, approximately 6 h after starvation. Accumulation of BP74 mRNA did not occur in Dictyostelium cells that had been starved in fast-shaken suspension cultures but was induced in similar cultures to which cyclic AMP pulses had been added. The BP74 cDNA and gene were characterized by DNA sequence analysis and transcriptional mapping. When the BP74 promoter region was fused with a chloramphenicol acetyltransferase reporter gene and reintroduced into Dictyostelium cells, the transfected chloramphenicol acetyltransferase gene displayed the same developmentally regulated pattern of expression as did the endogenous BP74 gene, suggesting that all of the cis-acting elements required for regulated expression were carried by a 2-kilobase cloned genomic fragment. On the basis of sequence analysis, the gene appeared to encode a protein containing a 20-residue hydrophobic sequence at the amino-terminal end and 26 copies of a 20-amino-acid repeat.


1990 ◽  
Vol 10 (7) ◽  
pp. 3492-3504
Author(s):  
G Rudenko ◽  
S Le Blancq ◽  
J Smith ◽  
M G Lee ◽  
A Rattray ◽  
...  

At least one of the procyclic acidic repetitive protein (PARP or procyclin) loci of Trypanosoma brucei is a small (5- to 6-kilobase) polycistronic transcription unit which is transcribed in an alpha-amanitin-resistant manner. Its single promoter, as mapped by run-on transcription analysis and UV inactivation of transcription, is located immediately upstream of the first alpha-PARP gene. Transcription termination occurs in a region approximately 3 kilobases downstream of the beta-PARP gene. The location of the promoter was confirmed by its ability to direct transcription of the bacterial chloramphenicol acetyltransferase gene in insect-form (procyclic) T. brucei. The putative PARP promoter is located in the region between the 3' splice acceptor site (nucleotide position 0) and nucleotide position -196 upstream of the alpha-PARP genes. Regulatory regions influencing the levels of PARP expression may be located further upstream. We conclude that a single promoter, which is located very close to the 3' splice acceptor site of the alpha-PARP genes, directs the transcription of a small, polycistronic, and alpha-amanitin-resistant transcription unit.


1989 ◽  
Vol 9 (3) ◽  
pp. 1332-1335
Author(s):  
M R Mowatt ◽  
G S Wisdom ◽  
C E Clayton

The procyclic acidic repetitive proteins (PARPs) of Trypanosoma brucei are developmentally regulated surface proteins encoded by a family of polymorphic genes. We have determined the complete nucleotide sequence of a novel member of the PARP gene family and investigated its expression. The amino acid sequence deduced from the parpA alpha gene showed a marked conservation of both the amino- and carboxy-terminal regions compared with other PARPs but revealed the substitution of a pentapeptide for the dipeptide repeating unit that is characteristic of all other PARPs. Northern hybridization analysis indicated that expression of the parpA alpha gene, like that of other members of this gene family, is confined to the procyclic stage of the T. brucei life cycle. This result implies coordinate regulation of the unlinked genetic loci that encode PARPs.


Sign in / Sign up

Export Citation Format

Share Document