Overexpression of a leaderless form of yeast cytochrome c oxidase subunit Va circumvents the requirement for a leader peptide in mitochondrial import

1990 ◽  
Vol 10 (9) ◽  
pp. 4984-4986
Author(s):  
L K Dircks ◽  
R O Poyton

Subunit Va of Saccharomyces cerevisiae cytochrome c oxidase is a nucleus-encoded mitochondrial protein that is derived from a precursor with a 20-residue leader peptide. We previously reported that this leader peptide is required for import of subunit Va into mitochondria in vivo (S. M. Glaser, C. E. Trueblood, L. K. Dircks, R. O. Poyton, and M. G. Cumsky, J. Cell. Biochem. 36:275-278, 1988). Here we show that overproduction of a leaderless form of subunit Va circumvents the leader peptide requirement for import into mitochondria in vivo.

1990 ◽  
Vol 10 (9) ◽  
pp. 4984-4986 ◽  
Author(s):  
L K Dircks ◽  
R O Poyton

Subunit Va of Saccharomyces cerevisiae cytochrome c oxidase is a nucleus-encoded mitochondrial protein that is derived from a precursor with a 20-residue leader peptide. We previously reported that this leader peptide is required for import of subunit Va into mitochondria in vivo (S. M. Glaser, C. E. Trueblood, L. K. Dircks, R. O. Poyton, and M. G. Cumsky, J. Cell. Biochem. 36:275-278, 1988). Here we show that overproduction of a leaderless form of subunit Va circumvents the leader peptide requirement for import into mitochondria in vivo.


Genetics ◽  
1997 ◽  
Vol 145 (4) ◽  
pp. 903-910 ◽  
Author(s):  
A Thomas Torello ◽  
Michael H Overholtzer ◽  
Vicki L Cameron ◽  
Nathalie Bonnefoy ◽  
Thomas D Fox

Cytochrome c oxidase subunit II (Cox2p) of Saccharomyces cerevisiae is synthesized within mitochondria as a precursor, pre-Cox2p. The 15-amino acid leader peptide is processed after export to the intermembrane space. Leader peptides are relatively unusual in mitochondrially coded proteins: indeed mammalian Cox2p lacks a leader peptide. We generated two deletions in the S. cerevisiae COX2 gene, removing either the leader peptide (cox2-20) or the leader peptide and processing site (cox2-21) without altering either the promoter or the mRNA-specific translational activation site. When inserted into mtDNA, both deletions substantially reduced the steady-state levels of Cox2p and caused a tight nonrespiratory phenotype. A respiring pseudorevertant of the cox2-20 mutant was heteroplasmic for the original mutant mtDNA and a ρ–-mtDNA whose deletion fused the first 251 codons of the mitochondrial gene encoding cytochrome b to the cox2-20 sequence. The resulting fusion protein was processed to yield functional Cox2p. Thus, the presence of amino-terminal cytochrome b sequence bypassed the need for the pre-Cox2p leader peptide. We propose that the pre-Cox2p leader peptide contains a targeting signal necessary for membrane insertion, without which it remains in the matrix and is rapidly degraded.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 573-585
Author(s):  
Vilius Stribinskis ◽  
Guo-Jian Gao ◽  
Steven R Ellis ◽  
Nancy C Martin

Abstract RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa3 cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.


1996 ◽  
Vol 91 (4) ◽  
pp. 475-481 ◽  
Author(s):  
Olav E. Rooyackers ◽  
Alexande R H. Kersten ◽  
Anton J. M. Wagenmakers

1. Recently we reported decreased activities of two mitochondrial marker enzymes (citrate synthase and cytochrome c oxidase) in skeletal muscle from a rat model of critical illness (zymosan injection). In the present study we investigated (i) whether these decreases in enzyme activity reflect a reduction in mitochondrial content and (ii) whether this potential reduction in mitochondrial content was the result of decreased mitochondrial protein synthesis rates. 2. Mitochondrial protein content was calculated from the activities of cytochrome c oxidase in whole-muscle homogenates and purified mitochondria. Synthesis rates of mitochondrial protein in vivo were studied by measuring the incorporation of [3H]phenylalanine into mitochondrial protein using the flooding dose technique. 3. Mitochondrial protein content was reduced to 54% of that measured in the pair-fed rats and to 71% of that measured in control rats fed ad libitum 2 days after the zymosan treatment The decreased mitochondrial protein content observed 2 days after zymosan challenge was preceded by a reduced rate of synthesis of mitochondrial protein 16 h after treatment. Both changes were of greater magnitude than the general muscle wasting and the decreased rate of synthesis of mixed protein observed in the zymosan-treated rats. 4. We conclude that the acute phase of critical illness in zymosan-treated rats is characterized by a substantial reduction in muscle mitochondria that is at least in part caused by a decreased rate of synthesis of mitochondrial protein. This derangement in mitochondrial protein metabolism may be related to the impaired muscle function observed during and after critical illness.


Genetics ◽  
2009 ◽  
Vol 182 (2) ◽  
pp. 519-528 ◽  
Author(s):  
Heather L. Fiumera ◽  
Maitreya J. Dunham ◽  
Scott A. Saracco ◽  
Christine A. Butler ◽  
Jessica A. Kelly ◽  
...  

1993 ◽  
Vol 121 (5) ◽  
pp. 1021-1029 ◽  
Author(s):  
B R Miller ◽  
M G Cumsky

We have continued our studies on the import pathway of the precursor to yeast cytochrome c oxidase subunit Va (pVa), a mitochondrial inner membrane protein. Previous work on this precursor demonstrated that import of pVa is unusually efficient, and that inner membrane localization is directed by a membrane-spanning domain in the COOH-terminal third of the protein. Here we report the results of studies aimed at analyzing the intramitochondrial sorting of pVa, as well as the role played by ancillary factors in import and localization of the precursor. We found that pVa was efficiently imported and correctly sorted in mitochondria prepared from yeast strains defective in the function of either mitochondrial heat shock protein (hsp)60 or hsp70. Under identical conditions the import and sorting of another mitochondrial protein, the precursor to the beta subunit of the F1 ATPase, was completely defective. Consistent with previous results demonstrating that the subunit Va precursor is loosely folded, we found that pVa could be efficiently imported into mitochondria after translation in wheat germ extracts. This results suggests that normal levels of extramitochondrial hsp70 are also not required for import of the protein. The results of this study enhance our understanding of the mechanism by which pVa is routed to the mitochondrial inner membrane. They suggest that while the NH2 terminus of pVa is exposed to the matrix and processed by the matrix metalloprotease, the protein remains anchored to the inner membrane before being assembled into a functional holoenzyme complex.


Sign in / Sign up

Export Citation Format

Share Document