Ecdysterone regulatory elements function as both transcriptional activators and repressors

1991 ◽  
Vol 11 (4) ◽  
pp. 1846-1853
Author(s):  
L Dobens ◽  
K Rudolph ◽  
E M Berger

A synthetic, 23-bp ecdysterone regulatory element (EcRE), derived from the upstream region of the Drosophila melanogaster hsp27 gene, was inserted adjacent to the herpes simplex virus thymidine kinase promoter fused to a bacterial gene for chloramphenicol acetyltransferase (CAT). Hybrid constructs were transfected into Drosophila S3 cells and assayed for ecdysterone-inducible CAT expression. In the absence of ecdysterone a tandem pair of EcREs repressed the high constitutive level of CAT activity found after transfection with the parent reporter plasmid alone. After hormone addition very high levels of CAT activity were observed. Insertion of the EcRE pair 3' of the CAT gene also led to high levels of ecdysterone-induced CAT expression, but the repression of high constitutive levels of CAT activity failed to occur. The EcRE-CAT construct was cotransfected with plasmids containing tandem 10-mers or 40-mers of the EcRE but lacking a reporter gene. These additional EcREs led to a reduced level of ecdysterone-induced CAT activity and to an elevation of basal CAT activity in the absence of hormone. The data suggest that the receptor binds to the EcRE in the absence of hormone, blocking basal transcription from a constitutive promoter. In the presence of ecdysterone, receptor-hormone binding to the EcRE leads to greatly enhanced transcription.

1991 ◽  
Vol 11 (4) ◽  
pp. 1846-1853 ◽  
Author(s):  
L Dobens ◽  
K Rudolph ◽  
E M Berger

A synthetic, 23-bp ecdysterone regulatory element (EcRE), derived from the upstream region of the Drosophila melanogaster hsp27 gene, was inserted adjacent to the herpes simplex virus thymidine kinase promoter fused to a bacterial gene for chloramphenicol acetyltransferase (CAT). Hybrid constructs were transfected into Drosophila S3 cells and assayed for ecdysterone-inducible CAT expression. In the absence of ecdysterone a tandem pair of EcREs repressed the high constitutive level of CAT activity found after transfection with the parent reporter plasmid alone. After hormone addition very high levels of CAT activity were observed. Insertion of the EcRE pair 3' of the CAT gene also led to high levels of ecdysterone-induced CAT expression, but the repression of high constitutive levels of CAT activity failed to occur. The EcRE-CAT construct was cotransfected with plasmids containing tandem 10-mers or 40-mers of the EcRE but lacking a reporter gene. These additional EcREs led to a reduced level of ecdysterone-induced CAT activity and to an elevation of basal CAT activity in the absence of hormone. The data suggest that the receptor binds to the EcRE in the absence of hormone, blocking basal transcription from a constitutive promoter. In the presence of ecdysterone, receptor-hormone binding to the EcRE leads to greatly enhanced transcription.


1996 ◽  
Vol 16 (5) ◽  
pp. 2408-2417 ◽  
Author(s):  
M Nakayama ◽  
J Stauffer ◽  
J Cheng ◽  
S Banerjee-Basu ◽  
E Wawrousek ◽  
...  

The molecular mechanisms generating muscle diversity during development are unknown. The phenotypic properties of slow- and fast-twitch myofibers are determined by the selective transcription of genes coding for contractile proteins and metabolic enzymes in these muscles, properties that fail to develop in cultured muscle. Using transgenic mice, we have identified regulatory elements in the evolutionarily related troponin slow (TnIs) and fast (TnIf) genes that confer specific transcription in either slow or fast muscles. Analysis of serial deletions of the rat TnIs upstream region revealed that sequences between kb -0.95 and -0.5 are necessary to confer slow-fiber-specific transcription; the -0.5-kb fragment containing the basal promoter was inactive in five transgenic mouse lines tested. We identified a 128-bp regulatory element residing at kb -0.8 that, when linked to the -0.5-kb TnIs promoter, specifically confers transcription to slow-twitch muscles. To identify sequences directing fast-fiber-specific transcription, we generated transgenic mice harboring a construct containing the TnIs kb -0.5 promoter fused to a 144-bp enhancer derived from the quail TnIf gene. Mice harboring the TnIf/TnIs chimera construct expressed the transgene in fast but not in slow muscles, indicating that these regulatory elements are sufficient to confer fiber-type-specific transcription. Alignment of rat TnIs and quail TnIf regulatory sequences indicates that there is a conserved spatial organization of core elements, namely, an E box, a CCAC box, a MEF-2-like sequence, and a previously uncharacterized motif. The core elements were shown to bind their cognate factors by electrophoretic mobility shift assays, and their mutation demonstrated that the TnIs CCAC and E boxes are necessary for transgene expression. Our results suggest that the interaction of closely related transcriptional protein-DNA complexes is utilized to specify fiber type diversity.


1987 ◽  
Vol 7 (5) ◽  
pp. 1807-1814 ◽  
Author(s):  
A B Chepelinsky ◽  
B Sommer ◽  
J Piatigorsky

Previous experiments have indicated that 5' flanking DNA sequences (nucleotides-366 to +46) are capable of regulating the lens-specific transcription of the murine alpha A-crystallin gene. Here we have analyzed these 5' regulatory sequences by transfecting explanted embryonic chicken lens epithelia with different alpha A-crystallin-CAT (chloramphenicol acetyltransferase) hybrid genes (alpha A-crystallin promoter sequences fused to the bacterial CAT gene in the pSVO-CAT expression vector). The results indicated the presence of a proximal (-88 to +46) and a distal (-111 to -88) domain which must interact for promoter function. Deletion experiments showed that the sequence between -88 and -60 was essential for function of the proximal domain in the explanted epithelia. A synthetic oligonucleotide containing the sequence between -111 and -84 activated the proximal domain when placed in either orientation 57 base pairs upstream from position -88 of the alpha A-crystallin-CAT hybrid gene.


1987 ◽  
Vol 7 (5) ◽  
pp. 1807-1814
Author(s):  
A B Chepelinsky ◽  
B Sommer ◽  
J Piatigorsky

Previous experiments have indicated that 5' flanking DNA sequences (nucleotides-366 to +46) are capable of regulating the lens-specific transcription of the murine alpha A-crystallin gene. Here we have analyzed these 5' regulatory sequences by transfecting explanted embryonic chicken lens epithelia with different alpha A-crystallin-CAT (chloramphenicol acetyltransferase) hybrid genes (alpha A-crystallin promoter sequences fused to the bacterial CAT gene in the pSVO-CAT expression vector). The results indicated the presence of a proximal (-88 to +46) and a distal (-111 to -88) domain which must interact for promoter function. Deletion experiments showed that the sequence between -88 and -60 was essential for function of the proximal domain in the explanted epithelia. A synthetic oligonucleotide containing the sequence between -111 and -84 activated the proximal domain when placed in either orientation 57 base pairs upstream from position -88 of the alpha A-crystallin-CAT hybrid gene.


1999 ◽  
Vol 339 (2) ◽  
pp. 335-341 ◽  
Author(s):  
Mun Seog CHANG ◽  
Hae Yong YOO ◽  
Hyune Mo RHO

Cu/Zn-superoxide dismutase (SOD1) catalyses the dismutation of superoxide radicals and neutralizes the oxidative effects of various chemicals. Deletion analysis of the upstream region of the rat SOD1 gene revealed that the promoter contains a positive regulatory element (PRE) and a negative regulatory element (NRE), which encompass the regions from -576 to -412 and from -412 to -305 respectively from the site of initiation of transcription. These DNA elements showed enhancer and silencer activities respectively in the natural context and in a heterologous promoter system. Using an electrophoretic-mobility-shift assay and a supershift assay with a specific antibody, the cis-elements of the PRE and NRE were identified as binding sites for transcription factors Elk1 and YY1 (Ying-Yang 1) respectively. Consistent with the presumed roles of the PRE and NRE, Elk1 increased SOD1 gene transcription about 4–5-fold, whereas YY1 exerted a negative effect of about 6-fold. Mutations of the Elk1- and YY1-binding sites led to diminution and elevation respectively of transcriptional activities, both in the natural context and in heterologous promoter systems. These results suggest that the transcription factors Elk1 and YY1, binding in the PRE and NRE respectively, co-ordinate the expression of the SOD1 gene.


1989 ◽  
Vol 9 (3) ◽  
pp. 1005-1013 ◽  
Author(s):  
I Hwang ◽  
C B Chae

The testis-specific H2B histone (TH2B) gene is expressed in pachytene spermatocytes during meiotic prophase I in the absence of any significant DNA synthesis. Unlike somatic histones, synthesis of testis-specific histones is not affected by inhibitors of DNA synthesis. A genomic rat TH2B gene was cloned by using a DNA fragment derived from TH2B cDNA as a probe. Expression of the cloned TH2B was investigated by gene transfer experiments. From these studies, we found that the 5' upstream region of the cloned TH2B gene contained S-phase-specific transcription elements which regulated expression of a reporter gene in an S-phase-specific manner. The S-phase-regulatory element was found to be located in two regions containing CCAAT elements between -153 and -110 base pairs (bp) and an octamer element (ATTTGCAT) between -109 and -84 bp. The two regions were required for a maximal stimulation of transcription of the cloned TH2B gene in S phase. On the other hand, only the octamer element was reported be important for the S-phase-specific transcription of human H2B gene. Since the synthesis of the TH2B histone is independent of DNA synthesis and specific for pachytene spermatocytes in vivo, the presence of the S-phase-specific transcription regulatory elements in the TH2B gene is surprising.


1987 ◽  
Vol 7 (1) ◽  
pp. 388-397 ◽  
Author(s):  
S Arrigo ◽  
M Yun ◽  
K Beemon

A cis-acting enhancer element has been detected within the gag gene of several avian retroviruses, including Rous sarcoma virus, Fujinami sarcoma virus, and the endogenous Rous-associated virus-0. A consensus enhancer core sequence, GTGGTTTG, is present in all of these viral genomes, approximately 900 bases downstream from the site of initiation of transcription. When an internal fragment derived from the gag gene of any of these viruses (spanning nucleotides 533 to approximately 1149) was inserted into a plasmid containing the chloramphenicol acetyltransferase (cat) gene under control of the simian virus 40 promoter, 9- or 21-fold enhancement of CAT expression was observed after transfection into mouse L cells and chicken embryo fibroblasts, respectively. This enhancement was not dependent on the position of insertion of the gag fragment into the plasmid. However, there was a strong dependence on orientation, with higher levels of CAT expression in constructs in which the 5' end of the gag fragment was nearest to the promoter, suggesting a possible negative regulatory element at the 3' end of this fragment. Deletion of the 3' end of the insert resulted in a gag fragment, containing nucleotides 533 to 1017, which enhanced expression equally in either orientation. When the gag fragment was inserted into a plasmid containing the cat gene under the control of an intact Rous sarcoma virus long terminal repeat, it induced a two- to threefold increase in CAT activity and CAT mRNA levels. Translation of the gag fragment did not appear to be necessary for the observed enhancement, since two insertional mutations resulting in frameshifts in the gag insert did not affect CAT expression. However, deletion of a 330-base internal fragment from the gag insert restored a basal level of CAT activity. These results suggest that retroviruses have regulatory elements within their genes distinct from those in the long terminal repeats that flank the genes.


1987 ◽  
Vol 7 (1) ◽  
pp. 388-397
Author(s):  
S Arrigo ◽  
M Yun ◽  
K Beemon

A cis-acting enhancer element has been detected within the gag gene of several avian retroviruses, including Rous sarcoma virus, Fujinami sarcoma virus, and the endogenous Rous-associated virus-0. A consensus enhancer core sequence, GTGGTTTG, is present in all of these viral genomes, approximately 900 bases downstream from the site of initiation of transcription. When an internal fragment derived from the gag gene of any of these viruses (spanning nucleotides 533 to approximately 1149) was inserted into a plasmid containing the chloramphenicol acetyltransferase (cat) gene under control of the simian virus 40 promoter, 9- or 21-fold enhancement of CAT expression was observed after transfection into mouse L cells and chicken embryo fibroblasts, respectively. This enhancement was not dependent on the position of insertion of the gag fragment into the plasmid. However, there was a strong dependence on orientation, with higher levels of CAT expression in constructs in which the 5' end of the gag fragment was nearest to the promoter, suggesting a possible negative regulatory element at the 3' end of this fragment. Deletion of the 3' end of the insert resulted in a gag fragment, containing nucleotides 533 to 1017, which enhanced expression equally in either orientation. When the gag fragment was inserted into a plasmid containing the cat gene under the control of an intact Rous sarcoma virus long terminal repeat, it induced a two- to threefold increase in CAT activity and CAT mRNA levels. Translation of the gag fragment did not appear to be necessary for the observed enhancement, since two insertional mutations resulting in frameshifts in the gag insert did not affect CAT expression. However, deletion of a 330-base internal fragment from the gag insert restored a basal level of CAT activity. These results suggest that retroviruses have regulatory elements within their genes distinct from those in the long terminal repeats that flank the genes.


1989 ◽  
Vol 9 (3) ◽  
pp. 1005-1013
Author(s):  
I Hwang ◽  
C B Chae

The testis-specific H2B histone (TH2B) gene is expressed in pachytene spermatocytes during meiotic prophase I in the absence of any significant DNA synthesis. Unlike somatic histones, synthesis of testis-specific histones is not affected by inhibitors of DNA synthesis. A genomic rat TH2B gene was cloned by using a DNA fragment derived from TH2B cDNA as a probe. Expression of the cloned TH2B was investigated by gene transfer experiments. From these studies, we found that the 5' upstream region of the cloned TH2B gene contained S-phase-specific transcription elements which regulated expression of a reporter gene in an S-phase-specific manner. The S-phase-regulatory element was found to be located in two regions containing CCAAT elements between -153 and -110 base pairs (bp) and an octamer element (ATTTGCAT) between -109 and -84 bp. The two regions were required for a maximal stimulation of transcription of the cloned TH2B gene in S phase. On the other hand, only the octamer element was reported be important for the S-phase-specific transcription of human H2B gene. Since the synthesis of the TH2B histone is independent of DNA synthesis and specific for pachytene spermatocytes in vivo, the presence of the S-phase-specific transcription regulatory elements in the TH2B gene is surprising.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


Sign in / Sign up

Export Citation Format

Share Document