scholarly journals Different classes of polyadenylation sites in the yeast Saccharomyces cerevisiae.

1991 ◽  
Vol 11 (6) ◽  
pp. 3060-3069 ◽  
Author(s):  
S Irniger ◽  
C M Egli ◽  
G H Braus

This report provides an analysis of the function of polyadenylation sites from six different genes of the yeast Saccharomyces cerevisiae. These sites were tested for their ability to turn off read-through transcription into the URA3 gene in vivo when inserted into an ACT-URA3 fusion gene. The 3' ends of all polyadenylation sites inserted into the test system in their natural configuration are identical to the 3' ends of the chromosomal genes. We identified two classes of polyadenylation sites: (i) efficient sites (originating from the genes GCN4 and PHO5) that were functional in a strict orientation-dependent manner and (ii) bidirectional sites (derived from ARO4, TRP1, and TRP4) that had a distinctly reduced efficiency. The ADH1 polyadenylation site was efficient and bidirectional and was shown to be a combination of two polyadenylation sites of two convergently transcribed genes. Sequence comparison revealed that all efficient unidirectional polyadenylation sites contain the sequence TTTTTAT, whereas all bidirectional sites have the tripartite sequence TAG...TA (T)GT...TTT. Both sequence elements have previously been proposed to be involved in 3' end formation. Site-directed point mutagenesis of the TTTTTAT sequence had no effect, whereas mutations within the tripartite sequence caused a reduced efficiency for 3' end formation. The tripartite sequence alone, however, is not sufficient for 3' end formation, but it might be part of a signal sequence in the bidirectional class of yeast polyadenylation sites. Our findings support the assumption that there are at least two different mechanisms with different sequence elements directing 3' end formation in yeast.

1991 ◽  
Vol 11 (6) ◽  
pp. 3060-3069
Author(s):  
S Irniger ◽  
C M Egli ◽  
G H Braus

This report provides an analysis of the function of polyadenylation sites from six different genes of the yeast Saccharomyces cerevisiae. These sites were tested for their ability to turn off read-through transcription into the URA3 gene in vivo when inserted into an ACT-URA3 fusion gene. The 3' ends of all polyadenylation sites inserted into the test system in their natural configuration are identical to the 3' ends of the chromosomal genes. We identified two classes of polyadenylation sites: (i) efficient sites (originating from the genes GCN4 and PHO5) that were functional in a strict orientation-dependent manner and (ii) bidirectional sites (derived from ARO4, TRP1, and TRP4) that had a distinctly reduced efficiency. The ADH1 polyadenylation site was efficient and bidirectional and was shown to be a combination of two polyadenylation sites of two convergently transcribed genes. Sequence comparison revealed that all efficient unidirectional polyadenylation sites contain the sequence TTTTTAT, whereas all bidirectional sites have the tripartite sequence TAG...TA (T)GT...TTT. Both sequence elements have previously been proposed to be involved in 3' end formation. Site-directed point mutagenesis of the TTTTTAT sequence had no effect, whereas mutations within the tripartite sequence caused a reduced efficiency for 3' end formation. The tripartite sequence alone, however, is not sufficient for 3' end formation, but it might be part of a signal sequence in the bidirectional class of yeast polyadenylation sites. Our findings support the assumption that there are at least two different mechanisms with different sequence elements directing 3' end formation in yeast.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1994 ◽  
Vol 14 (7) ◽  
pp. 4633-4642
Author(s):  
S Heidmann ◽  
C Schindewolf ◽  
G Stumpf ◽  
H Domdey

Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.


1992 ◽  
Vol 12 (9) ◽  
pp. 4215-4229 ◽  
Author(s):  
S Heidmann ◽  
B Obermaier ◽  
K Vogel ◽  
H Domdey

In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.


1994 ◽  
Vol 14 (7) ◽  
pp. 4633-4642 ◽  
Author(s):  
S Heidmann ◽  
C Schindewolf ◽  
G Stumpf ◽  
H Domdey

Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.


2002 ◽  
Vol 13 (7) ◽  
pp. 2223-2232 ◽  
Author(s):  
Sandra Wittke ◽  
Martin Dünnwald ◽  
Markus Albertsen ◽  
Nils Johnsson

Ssh1p of Saccharomyces cerevisiae is related in sequence to Sec61p, a general receptor for signal sequences and the major subunit of the channel that guides proteins across the membrane of the endoplasmic reticulum. The split-ubiquitin technique was used to determine whether Ssh1p serves as an additional receptor for signal sequences in vivo. We measured the interactions between the Nub-labeled Ssh1p and Cub-translocation substrates bearing four different signal sequences. The so-determined interaction profile of Ssh1p was compared with the signal sequence interaction profile of the correspondingly modified Nub-Sec61p. The assay reveals interactions of Ssh1p with the signal sequences of Kar2p and invertase, whereas Sec61p additionally interacts with the signal sequences of Mfα1 and carboxypeptidase Y. The measured physical proximity between Ssh1p and the β-subunit of the signal sequence recognition particle receptor confirms our hypothesis that Ssh1p is directly involved in the cotranslational translocation of proteins across the membrane of the endoplasmic reticulum.


2000 ◽  
Vol 20 (5) ◽  
pp. 1816-1824 ◽  
Author(s):  
Tiina Sedman ◽  
Silja Kuusk ◽  
Sirje Kivi ◽  
Juhan Sedman

ABSTRACT A novel DNA helicase, a homolog of several prokaryotic helicases, including Escherichia coli Rep and UvrD proteins, is encoded by the Saccharomyces cerevisiae nuclear genome open reading frame YOL095c on the chromosome XV. Our data demonstrate that the helicase is localized in the yeast mitochondria and is loosely associated with the mitochondrial inner membrane during biochemical fractionation. The sequence of the C-terminal end of the 80-kDa helicase protein is similar to a typical N-terminal mitochondrial targeting signal; deletions and point mutations in this region abolish transport of the protein into mitochondria. The C-terminal signal sequence of the helicase targets a heterologous carrier protein into mitochondria in vivo. The purified recombinant protein can unwind duplex DNA molecules in an ATP-dependent manner. The helicase is required for the maintenance of the functional ([rho +]) mitochondrial genome on both fermentable and nonfermentable carbon sources. However, the helicase is not essential for the maintenance of several defective ([rho −]) mitochondrial genomes. We also demonstrate that the helicase is not required for transcription in mitochondria.


1986 ◽  
Vol 6 (2) ◽  
pp. 688-702 ◽  
Author(s):  
J M Ivy ◽  
A J Klar ◽  
J B Hicks

Mating type in the yeast Saccharomyces cerevisiae is determined by the MAT (a or alpha) locus. HML and HMR, which usually contain copies of alpha and a mating type information, respectively, serve as donors in mating type interconversion and are under negative transcriptional control. Four trans-acting SIR (silent information regulator) loci are required for repression of transcription. A defect in any SIR gene results in expression of both HML and HMR. The four SIR genes were isolated from a genomic library by complementation of sir mutations in vivo. DNA blot analysis suggests that the four SIR genes share no sequence homology. RNA blots indicate that SIR2, SIR3, and SIR4 each encode one transcript and that SIR1 encodes two transcripts. Null mutations, made by replacement of the normal genomic allele with deletion-insertion mutations created in the cloned SIR genes, have a Sir- phenotype and are viable. Using the cloned genes, we showed that SIR3 at a high copy number is able to suppress mutations of SIR4. RNA blot analysis suggests that this suppression is not due to transcriptional regulation of SIR3 by SIR4; nor does any SIR4 gene transcriptionally regulate another SIR gene. Interestingly, a truncated SIR4 gene disrupts regulation of the silent mating type loci. We propose that interaction of at least the SIR3 and SIR4 gene products is involved in regulation of the silent mating type genes.


2005 ◽  
Vol 4 (4) ◽  
pp. 832-835 ◽  
Author(s):  
Terri S. Rice ◽  
Min Ding ◽  
David S. Pederson ◽  
Nicholas H. Heintz

ABSTRACT Here we show that the Saccharomyces cerevisiae tRNAHis guanylyltransferase Thg1p interacts with the origin recognition complex in vivo and in vitro and that overexpression of hemagglutinin-Thg1p selectively impedes growth of orc2-1(Ts) cells at the permissive temperature. Studies with conditional mutants indicate that Thg1p couples nuclear division and migration to cell budding and cytokinesis in yeast.


Sign in / Sign up

Export Citation Format

Share Document