scholarly journals Induction of neurite outgrowth by v-src mimics critical aspects of nerve growth factor-induced differentiation.

1991 ◽  
Vol 11 (9) ◽  
pp. 4739-4750 ◽  
Author(s):  
S M Thomas ◽  
M Hayes ◽  
G D'Arcangelo ◽  
R C Armstrong ◽  
B E Meyer ◽  
...  

PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.

1991 ◽  
Vol 11 (9) ◽  
pp. 4739-4750
Author(s):  
S M Thomas ◽  
M Hayes ◽  
G D'Arcangelo ◽  
R C Armstrong ◽  
B E Meyer ◽  
...  

PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.


2014 ◽  
Vol 5 (6) ◽  
pp. 1125-1133 ◽  
Author(s):  
Chun-lin Liu ◽  
Te-chun Hsia ◽  
Mei-chin Yin

A nerve growth factor-differentiated PC12 cell line was used to investigate the protective effects ofs-methyl cysteine (SMC) at 1, 2, 4, and 8 μM under oxygen–glucose deprivation (OGD) conditions.


1978 ◽  
Vol 78 (3) ◽  
pp. 747-755 ◽  
Author(s):  
LA Greene

The PC12 clone is a noradrenergic cell line derived from a rat pheochromocytoma. In culture medium containing horse serum, PC12 cells undergo mitosis; when nerve growth factor (NGF) is included in the medium, the cells cease multiplication and extend neuritis. It is shown here: (a) that PC12 cells are not viable in serum-free medium. When serum is withdrawn, 90 percent of the cells die within 4-6 days and 99 percent by 2-3 wk. (b) If NGF is added at the time of serum withdrawal, the cells undergo one doubling and remain viable for at least 1 mo. (c) Addition of NGF to cultures after more than 2 days in serum-free conditions results in maintenance of surviving cells, but not in an increase in cell number. (d) NGD also induces neurite outgrowth from PC12 cells in serum-free medium. (e) NGF-treated cells exhibit much less cell-cell and neurite-neurite aggregation in the absence than in the presence of serum. (f) The apparent minimum level of 2.5S NGF required for PC12 survival and morphological differentiation in serum-free medium is about 10 ng/ml (approximately 0.4 nM). (g) Withdrawal of NGF in serum-free conditions results in degeneration of neurites and loss of cell viability. (h) Experiments with campotothecin demonstrate that the effects of NGF on survival and neurite outgrowth may be uncoupled and suggest that the survival effects are transcriptionally independent. The present results also suggest that PC12 cells have a requirement for NGF (similar to that of normal sympathetic neurons) and that serum may substitute for this requirement. In addition, the present system of maintaining a highly differentiated cell line in a chemically defined medium suggests certain experimental opportunities.


FEBS Letters ◽  
2010 ◽  
Vol 584 (13) ◽  
pp. 2821-2826 ◽  
Author(s):  
Toshiya Sugino ◽  
Mitsuhisa Maruyama ◽  
Masaya Tanno ◽  
Atsushi Kuno ◽  
Kiyohiro Houkin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document