Effect of terminal nonhomologies on homologous recombination in Xenopus laevis oocytes

1992 ◽  
Vol 12 (12) ◽  
pp. 5426-5437
Author(s):  
S Jeong-Yu ◽  
D Carroll

Homologous recombination of linear DNA molecules in Xenopus laevis oocytes is very efficient. The predictions of molecular models for this recombination process were tested with substrates with terminal nonhomologies (nonhomologous sequences). It was found that nonhomologies on one or both ends of an otherwise efficient substrate substantially reduced the yield of recombination products. In the case of a single nonhomology, inhibition was observed for all lengths of nonhomology, from 60 to 1,690 bp, being most dramatic for the longer blocks. Examination of time courses of recombination showed that the blocks were largely kinetic; that is, substrates with short nonhomologies eventually yielded substantial levels of completed products. Intermediates that accumulated after the injection of end-blocked substrates were characterized by two-dimensional gel electrophoresis and hybridization with strand-specific oligonucleotide probes. These blocked intermediates were shown to have base-paired junctions, but resolution was prevented by the failure to remove the 3'-ending strand of the original nonhomology. Continuing exonuclease action created a single-strand gap adjacent to the position of the persistent nonhomology. In contrast, the strand that included the unblocked side of the junction could be sealed. These results are consistent with a nonconservative, resection-annealing mechanism of homologous recombination in the oocytes and suggest the absence of any activity that can efficiently remove 3' tails.

1992 ◽  
Vol 12 (12) ◽  
pp. 5426-5437 ◽  
Author(s):  
S Jeong-Yu ◽  
D Carroll

Homologous recombination of linear DNA molecules in Xenopus laevis oocytes is very efficient. The predictions of molecular models for this recombination process were tested with substrates with terminal nonhomologies (nonhomologous sequences). It was found that nonhomologies on one or both ends of an otherwise efficient substrate substantially reduced the yield of recombination products. In the case of a single nonhomology, inhibition was observed for all lengths of nonhomology, from 60 to 1,690 bp, being most dramatic for the longer blocks. Examination of time courses of recombination showed that the blocks were largely kinetic; that is, substrates with short nonhomologies eventually yielded substantial levels of completed products. Intermediates that accumulated after the injection of end-blocked substrates were characterized by two-dimensional gel electrophoresis and hybridization with strand-specific oligonucleotide probes. These blocked intermediates were shown to have base-paired junctions, but resolution was prevented by the failure to remove the 3'-ending strand of the original nonhomology. Continuing exonuclease action created a single-strand gap adjacent to the position of the persistent nonhomology. In contrast, the strand that included the unblocked side of the junction could be sealed. These results are consistent with a nonconservative, resection-annealing mechanism of homologous recombination in the oocytes and suggest the absence of any activity that can efficiently remove 3' tails.


1991 ◽  
Vol 11 (6) ◽  
pp. 3268-3277 ◽  
Author(s):  
E Maryon ◽  
D Carroll

Homologous recombination of DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient when those molecules are linear and have overlapping homologous ends. It was previously shown that a 5'----3' exonuclease activity in oocytes attacks injected linear DNAs and leaves them with single-stranded 3' tails. We tested the hypothesis that such tailed molecules are early intermediates on the pathway to recombination products. Substrates with 3' tails were made in vitro and injected into oocytes, where they recombined rapidly and efficiently. In experiments with mixed substrates, molecules with 3' tails entered recombination intermediates and products more rapidly than did molecules with flush ends. Molecules endowed in vitro with 5' tails also recombined efficiently in oocytes, but their rate was not faster than for flush-ended substrates. In most cases, the 5' tails served as templates for resynthesis of the 3' strands, regenerating duplex ends which then entered the normal recombination pathway. In oocytes from one animal, some of the 5' tails were removed, and this was exacerbated when resynthesis was partially blocked. Analysis by two-dimensional gel electrophoresis of recombination intermediates from 5'-tailed substrates confirmed that they had acquired 3' tails as a result of the action of the 5'----3' exonuclease. These results demonstrate that homologous recombination in oocytes proceeds via a pathway that involves single-stranded 3' tails. Molecular models incorporating this feature are discussed.


1991 ◽  
Vol 11 (6) ◽  
pp. 3268-3277
Author(s):  
E Maryon ◽  
D Carroll

Homologous recombination of DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient when those molecules are linear and have overlapping homologous ends. It was previously shown that a 5'----3' exonuclease activity in oocytes attacks injected linear DNAs and leaves them with single-stranded 3' tails. We tested the hypothesis that such tailed molecules are early intermediates on the pathway to recombination products. Substrates with 3' tails were made in vitro and injected into oocytes, where they recombined rapidly and efficiently. In experiments with mixed substrates, molecules with 3' tails entered recombination intermediates and products more rapidly than did molecules with flush ends. Molecules endowed in vitro with 5' tails also recombined efficiently in oocytes, but their rate was not faster than for flush-ended substrates. In most cases, the 5' tails served as templates for resynthesis of the 3' strands, regenerating duplex ends which then entered the normal recombination pathway. In oocytes from one animal, some of the 5' tails were removed, and this was exacerbated when resynthesis was partially blocked. Analysis by two-dimensional gel electrophoresis of recombination intermediates from 5'-tailed substrates confirmed that they had acquired 3' tails as a result of the action of the 5'----3' exonuclease. These results demonstrate that homologous recombination in oocytes proceeds via a pathway that involves single-stranded 3' tails. Molecular models incorporating this feature are discussed.


1982 ◽  
Vol 28 (4) ◽  
pp. 1011-1014 ◽  
Author(s):  
C F Austerberry ◽  
P L Paine

Abstract Using the oocyte of Xenopus laevis, we present an experimental system, involving two-dimensional gel electrophoresis, for measuring unambiguously the nucleocytoplasmic distribution of proteins within a living cell.


1991 ◽  
Vol 11 (6) ◽  
pp. 3278-3287 ◽  
Author(s):  
E Maryon ◽  
D Carroll

Homologous recombination between DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient if injected molecules have overlapping homologous ends. Earlier work demonstrated that ends of linear molecules are degraded by a 5'----3' exonuclease activity, yielding 3' tails that participate in recombination. Here, we have characterized intermediates further advanced along the recombination pathway. The intermediates were identified by their unique electrophoretic and kinetic properties. Two-dimensional gel electrophoresis and hybridization with oligonucleotide probes showed that the intermediates had heteroduplex junctions within their homologous overlaps in which strands ending 3' were full length and those ending 5' were shortened. Additional characterization suggested that these intermediates had formed by the annealing of complementary 3' tails. Annealed junctions made in vitro were rapidly processed to products, indicating that they are on the normal recombination pathway. These results support a nonconservative, single-strand annealing mode of recombination. This recombination mechanism appears to be shared by many organisms, including bacteria, fungi, plants, and mammals.


1991 ◽  
Vol 11 (6) ◽  
pp. 3278-3287 ◽  
Author(s):  
E Maryon ◽  
D Carroll

Homologous recombination between DNA molecules injected into Xenopus laevis oocyte nuclei is extremely efficient if injected molecules have overlapping homologous ends. Earlier work demonstrated that ends of linear molecules are degraded by a 5'----3' exonuclease activity, yielding 3' tails that participate in recombination. Here, we have characterized intermediates further advanced along the recombination pathway. The intermediates were identified by their unique electrophoretic and kinetic properties. Two-dimensional gel electrophoresis and hybridization with oligonucleotide probes showed that the intermediates had heteroduplex junctions within their homologous overlaps in which strands ending 3' were full length and those ending 5' were shortened. Additional characterization suggested that these intermediates had formed by the annealing of complementary 3' tails. Annealed junctions made in vitro were rapidly processed to products, indicating that they are on the normal recombination pathway. These results support a nonconservative, single-strand annealing mode of recombination. This recombination mechanism appears to be shared by many organisms, including bacteria, fungi, plants, and mammals.


1985 ◽  
Vol 54 (03) ◽  
pp. 626-629 ◽  
Author(s):  
M Meyer ◽  
F H Herrmann

SummaryThe platelet proteins of 9 thrombasthenic patients from 7 families were analysed by high resolution two-dimensional gel electrophoresis (HR-2DE) and crossed immunoelectrophoresis (CIE). In 7 patients both glycoproteins (GPs) IIb and Ilia were absent or reduced to roughly the same extent. In two related patients only a trace of GP Ilb-IIIa complex was detected in CIE, but HR-2DE revealed a glycopeptide in the position of GP Ilia in an amount comparable to type II thrombasthenia. This GP Ilia-like component was neither recognized normally by anti-GP Ilb-IIIa antibodies nor labeled by surface iodination. In unreduced-reduced two-dimensional gel electrophoresis two components were observed in the region of GP Ilia. The assumption of a structural variant of GP Ilia in the two related patients is discussed.


2015 ◽  
Vol 22 (12) ◽  
pp. 1066-1075 ◽  
Author(s):  
Adriana Magalhães ◽  
Rayner Queiroz ◽  
Izabela Bastos ◽  
Jaime Santana ◽  
Marcelo Sousa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document