Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression

1992 ◽  
Vol 12 (5) ◽  
pp. 2454
Author(s):  
T S Cunningham ◽  
T G Cooper
1991 ◽  
Vol 11 (12) ◽  
pp. 6205-6215 ◽  
Author(s):  
T S Cunningham ◽  
T G Cooper

We have cloned the negative regulatory gene (DAL80) of the allantoin catabolic pathway, characterized its structure, and determined the physiological conditions that control DAL80 expression and its influence on the expression of nitrogen catabolic genes. Disruption of the DAL80 gene demonstrated that it regulates multiple nitrogen catabolic pathways. Inducer-independent expression was observed for the allantoin pathway genes DAL7 and DUR1,2, as well as the UGA1 gene required for gamma-aminobutyrate catabolism in the disruption mutant. DAL80 transcription was itself highly sensitive to nitrogen catabolite repression (NCR), and its promoter contained 12 sequences homologous to the NCR-sensitive UASNTR. The deduced DAL80 protein structure contains zinc finger and coiled-coil motifs. The DAL80 zinc finger motif possessed high homology to the transcriptional activator proteins required for expression of NCR-sensitive genes in fungi and the yeast GLN3 gene product required for functioning of the NCR-sensitive DAL UASNTR. It was also homologous to the three GATAA-binding proteins reported to be transcriptional activators in avian and mammalian tissues. The latter correlations raise the possibility that both positive and negative regulators of allantoin pathway transcription may bind to similar sequences.


1991 ◽  
Vol 11 (12) ◽  
pp. 6205-6215
Author(s):  
T S Cunningham ◽  
T G Cooper

We have cloned the negative regulatory gene (DAL80) of the allantoin catabolic pathway, characterized its structure, and determined the physiological conditions that control DAL80 expression and its influence on the expression of nitrogen catabolic genes. Disruption of the DAL80 gene demonstrated that it regulates multiple nitrogen catabolic pathways. Inducer-independent expression was observed for the allantoin pathway genes DAL7 and DUR1,2, as well as the UGA1 gene required for gamma-aminobutyrate catabolism in the disruption mutant. DAL80 transcription was itself highly sensitive to nitrogen catabolite repression (NCR), and its promoter contained 12 sequences homologous to the NCR-sensitive UASNTR. The deduced DAL80 protein structure contains zinc finger and coiled-coil motifs. The DAL80 zinc finger motif possessed high homology to the transcriptional activator proteins required for expression of NCR-sensitive genes in fungi and the yeast GLN3 gene product required for functioning of the NCR-sensitive DAL UASNTR. It was also homologous to the three GATAA-binding proteins reported to be transcriptional activators in avian and mammalian tissues. The latter correlations raise the possibility that both positive and negative regulators of allantoin pathway transcription may bind to similar sequences.


1996 ◽  
Vol 16 (3) ◽  
pp. 847-858 ◽  
Author(s):  
J A Coffman ◽  
R Rai ◽  
T Cunningham ◽  
V Svetlov ◽  
T G Cooper

Saccharomyces cerevisiae cells selectively use nitrogen sources in their environment. Nitrogen catabolite repression (NCR) is the basis of this selectivity. Until recently NCR was thought to be accomplished exclusively through the negative regulation of Gln3p function by Ure2p. The demonstration that NCR-sensitive expression of multiple nitrogen-catabolic genes occurs in a gln3 delta ure2 delta dal80::hisG triple mutant indicated that the prevailing view of the nitrogen regulatory circuit was in need of revision; additional components clearly existed. Here we demonstrate that another positive regulator, designated Gat1p, participates in the transcription of NCR-sensitive genes and is able to weakly activate transcription when tethered upstream of a reporter gene devoid of upstream activation sequence elements. Expression of GAT1 is shown to be NCR sensitive, partially Gln3p dependent, and Dal80p regulated. In agreement with this pattern of regulation, we also demonstrate the existence of Gln3p and Dal80p binding sites upstream of GAT1.


Sign in / Sign up

Export Citation Format

Share Document