scholarly journals Expression of the DAL80 gene, whose product is homologous to the GATA factors and is a negative regulator of multiple nitrogen catabolic genes in Saccharomyces cerevisiae, is sensitive to nitrogen catabolite repression.

1991 ◽  
Vol 11 (12) ◽  
pp. 6205-6215 ◽  
Author(s):  
T S Cunningham ◽  
T G Cooper

We have cloned the negative regulatory gene (DAL80) of the allantoin catabolic pathway, characterized its structure, and determined the physiological conditions that control DAL80 expression and its influence on the expression of nitrogen catabolic genes. Disruption of the DAL80 gene demonstrated that it regulates multiple nitrogen catabolic pathways. Inducer-independent expression was observed for the allantoin pathway genes DAL7 and DUR1,2, as well as the UGA1 gene required for gamma-aminobutyrate catabolism in the disruption mutant. DAL80 transcription was itself highly sensitive to nitrogen catabolite repression (NCR), and its promoter contained 12 sequences homologous to the NCR-sensitive UASNTR. The deduced DAL80 protein structure contains zinc finger and coiled-coil motifs. The DAL80 zinc finger motif possessed high homology to the transcriptional activator proteins required for expression of NCR-sensitive genes in fungi and the yeast GLN3 gene product required for functioning of the NCR-sensitive DAL UASNTR. It was also homologous to the three GATAA-binding proteins reported to be transcriptional activators in avian and mammalian tissues. The latter correlations raise the possibility that both positive and negative regulators of allantoin pathway transcription may bind to similar sequences.

1991 ◽  
Vol 11 (12) ◽  
pp. 6205-6215
Author(s):  
T S Cunningham ◽  
T G Cooper

We have cloned the negative regulatory gene (DAL80) of the allantoin catabolic pathway, characterized its structure, and determined the physiological conditions that control DAL80 expression and its influence on the expression of nitrogen catabolic genes. Disruption of the DAL80 gene demonstrated that it regulates multiple nitrogen catabolic pathways. Inducer-independent expression was observed for the allantoin pathway genes DAL7 and DUR1,2, as well as the UGA1 gene required for gamma-aminobutyrate catabolism in the disruption mutant. DAL80 transcription was itself highly sensitive to nitrogen catabolite repression (NCR), and its promoter contained 12 sequences homologous to the NCR-sensitive UASNTR. The deduced DAL80 protein structure contains zinc finger and coiled-coil motifs. The DAL80 zinc finger motif possessed high homology to the transcriptional activator proteins required for expression of NCR-sensitive genes in fungi and the yeast GLN3 gene product required for functioning of the NCR-sensitive DAL UASNTR. It was also homologous to the three GATAA-binding proteins reported to be transcriptional activators in avian and mammalian tissues. The latter correlations raise the possibility that both positive and negative regulators of allantoin pathway transcription may bind to similar sequences.


2009 ◽  
Vol 29 (13) ◽  
pp. 3803-3815 ◽  
Author(s):  
Isabelle Georis ◽  
André Feller ◽  
Fabienne Vierendeels ◽  
Evelyne Dubois

ABSTRACT Saccharomyces cerevisiae cells are able to adapt their metabolism according to the quality of the nitrogen sources available in the environment. Nitrogen catabolite repression (NCR) restrains the yeast's capacity to use poor nitrogen sources when rich ones are available. NCR-sensitive expression is modulated by the synchronized action of four DNA-binding GATA factors. Although the first identified GATA factor, Gln3, was considered the major activator of NCR-sensitive gene expression, our work positions Gat1 as a key factor for the integrated control of NCR in yeast for the following reasons: (i) Gat1 appeared to be the limiting factor for NCR gene expression, (ii) GAT1 expression was regulated by the four GATA factors in response to nitrogen availability, (iii) the two negative GATA factors Dal80 and Gzf3 interfered with Gat1 binding to DNA, and (iv) Gln3 binding to some NCR promoters required Gat1. Our study also provides mechanistic insights into the mode of action of the two negative GATA factors. Gzf3 interfered with Gat1 by nuclear sequestration and by competition at its own promoter. Dal80-dependent repression of NCR-sensitive gene expression occurred at three possible levels: Dal80 represses GAT1 expression, it competes with Gat1 for binding, and it directly represses NCR gene transcription.


1984 ◽  
Vol 4 (8) ◽  
pp. 1521-1527
Author(s):  
T E Torchia ◽  
R W Hamilton ◽  
C L Cano ◽  
J E Hopper

In Saccharomyces cerevisiae, the transcriptional expression of the galactose-melibiose catabolic pathway genes is under the control of at least three regulatory genes, GAL4, GAL80, and GAL3. We have isolated the GAL80 gene and have studied the effect of a null mutation on the carbon-controlled regulation of the MEL1 and GAL cluster genes. The null mutation was achieved in vivo by replacing the chromosomal wild-type GAL80 allele with an in vitro-created GAL80 deletion-disruption mutation. Enzyme activities and RNA levels for the GAL cluster and MEL1 genes were constitutively expressed in the null mutant strain grown on glycerol-lactate and were higher than in the isogenic wild-type yeast strain when compared after growth on galactose. Carbon catabolite repression of the GAL cluster and MEL1 genes, which occurs at the level of transcription, is retained in the null mutant. Deletion of the GAL80 gene in a gal4 cell does not restore GAL cluster and MEL1 gene expression. The data demonstrate that (i) the GAL80 protein is a purely negative regulator, (ii) the GAL80 protein does not mediate carbon catabolite repression, and (iii) the GAL4 protein is not simply an antagonizer of GAL80-mediated repression.


1996 ◽  
Vol 16 (3) ◽  
pp. 847-858 ◽  
Author(s):  
J A Coffman ◽  
R Rai ◽  
T Cunningham ◽  
V Svetlov ◽  
T G Cooper

Saccharomyces cerevisiae cells selectively use nitrogen sources in their environment. Nitrogen catabolite repression (NCR) is the basis of this selectivity. Until recently NCR was thought to be accomplished exclusively through the negative regulation of Gln3p function by Ure2p. The demonstration that NCR-sensitive expression of multiple nitrogen-catabolic genes occurs in a gln3 delta ure2 delta dal80::hisG triple mutant indicated that the prevailing view of the nitrogen regulatory circuit was in need of revision; additional components clearly existed. Here we demonstrate that another positive regulator, designated Gat1p, participates in the transcription of NCR-sensitive genes and is able to weakly activate transcription when tethered upstream of a reporter gene devoid of upstream activation sequence elements. Expression of GAT1 is shown to be NCR sensitive, partially Gln3p dependent, and Dal80p regulated. In agreement with this pattern of regulation, we also demonstrate the existence of Gln3p and Dal80p binding sites upstream of GAT1.


1984 ◽  
Vol 4 (8) ◽  
pp. 1521-1527 ◽  
Author(s):  
T E Torchia ◽  
R W Hamilton ◽  
C L Cano ◽  
J E Hopper

In Saccharomyces cerevisiae, the transcriptional expression of the galactose-melibiose catabolic pathway genes is under the control of at least three regulatory genes, GAL4, GAL80, and GAL3. We have isolated the GAL80 gene and have studied the effect of a null mutation on the carbon-controlled regulation of the MEL1 and GAL cluster genes. The null mutation was achieved in vivo by replacing the chromosomal wild-type GAL80 allele with an in vitro-created GAL80 deletion-disruption mutation. Enzyme activities and RNA levels for the GAL cluster and MEL1 genes were constitutively expressed in the null mutant strain grown on glycerol-lactate and were higher than in the isogenic wild-type yeast strain when compared after growth on galactose. Carbon catabolite repression of the GAL cluster and MEL1 genes, which occurs at the level of transcription, is retained in the null mutant. Deletion of the GAL80 gene in a gal4 cell does not restore GAL cluster and MEL1 gene expression. The data demonstrate that (i) the GAL80 protein is a purely negative regulator, (ii) the GAL80 protein does not mediate carbon catabolite repression, and (iii) the GAL4 protein is not simply an antagonizer of GAL80-mediated repression.


2002 ◽  
Vol 13 (3) ◽  
pp. 795-804 ◽  
Author(s):  
Takayuki Sekito ◽  
Zhengchang Liu ◽  
Janet Thornton ◽  
Ronald A. Butow

An important function of the RTG signaling pathway is maintenance of intracellular glutamate supplies in yeast cells with dysfunctional mitochondria. Herein, we report that MKS1is a negative regulator of the RTG pathway, acting between Rtg2p, a proximal sensor of mitochondrial function, and the bHLH transcription factors Rtg1p and Rtg3p. In mks1Δcells, RTG target gene expression is constitutive, bypassing the requirement for Rtg2p, and is no longer repressible by glutamate. We show further that Mks1p is a phosphoprotein whose phosphorylation pattern parallels that of Rtg3p in response to activation of the RTG pathway, and that Mks1p is in a complex with Rtg2p. MKS1 was previously implicated in the formation of [URE3], an inactive prion form of a negative regulator of the nitrogen catabolite repression pathway, Ure2p.rtgΔ mutations induce [URE3] and can do so independently of MKS1. We find that glutamate suppresses [URE3] formation, suggesting that the Mks1p effect on the formation of [URE3] can occur indirectly via regulation of theRTG pathway.


1990 ◽  
Vol 10 (10) ◽  
pp. 5128-5137 ◽  
Author(s):  
M M Witte ◽  
R C Dickson

LAC9 is a DNA-binding protein that regulates transcription of the lactose-galactose regulon in Kluyveromyces lactis. The DNA-binding domain is composed of a zinc finger and nearby amino acids (M. M. Witte and R. C. Dickson, Mol. Cell. Biol. 8:3726-3733, 1988). The single zinc finger appears to be structurally related to the zinc finger of many other fungal transcription activator proteins that contain positively charged residues and six conserved cysteines with the general form Cys-Xaa2-Cys-Xaa6-Cys-Xaa6-9-Cys-Xaa2-Cys-Xaa 6-Cys, where Xaan indicates a stretch of the indicated number of any amino acids (R. M. Evans and S. M. Hollenberg, Cell 52:1-3, 1988). The function(s) of the zinc finger and other amino acids in DNA-binding remains unclear. To determine which portion of the LAC9 DNA-binding domain mediates sequence recognition, we replaced the C6 zinc finger, amino acids adjacent to the carboxyl side of the zinc finger, or both with the analogous region from the Saccharomyces cerevisiae PPR1 or LEU3 protein. A chimeric LAC9 protein, LAC9(PPR1 34-61), carrying only the PPR1 zinc finger, retained the DNA-binding specificity of LAC9. However, LAC9(PPR1 34-75), carrying the PPR1 zinc finger and 14 amino acids on the carboxyl side of the zinc finger, gained the DNA-binding specificity of PPR1, indicating that these 14 amino acids are necessary for specific DNA binding. Our data show that C6 fingers can substitute for each other and allow DNA binding, but binding affinity is reduced. Thus, in a qualitative sense C6 fingers perform a similar function(s). However, the high-affinity binding required by natural C6 finger proteins demands a unique C6 finger with a specific amino acid sequence. This requirement may reflect conformational constraints, including interactions between the C6 finger and the carboxyl-adjacent amino acids; alternatively or in addition, it may indicate that unique, nonconserved amino acid residues in zinc fingers make sequence-specifying or stabilizing contacts with DNA.


2021 ◽  
Author(s):  
Pengxiang Chen ◽  
Fang Zhi ◽  
Xuewei Li ◽  
Wenyun Shen ◽  
Mingjia Yan ◽  
...  

Abstract Water deficit is one of the main challenges for apple (Malus × domestica) growth and productivity. Breeding drought-tolerant cultivars depends on a thorough understanding of the drought responses of apple trees. Here, we identified the zinc-finger protein B-BOX 7/CONSTANS-LIKE 9 (MdBBX7/MdCOL9), which plays a positive role in apple drought tolerance. The overexpression of MdBBX7 enhanced drought tolerance, whereas knocking down MdBBX7 expression reduced it. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis identified one cis-element of MdBBX7, CCTTG, as well as its known binding motif, the T/G box. ChIP-seq and RNA-seq identified 1,197 direct targets of MdBBX7, including ETHYLENE RESPONSE FACTOR (ERF1), EARLY RESPONSIVE TO DEHYDRATION 15 (ERD15), and GOLDEN2-LIKE 1 (GLK1) and these were further verified by ChIP-qPCR and electronic mobility shift assays. Yeast two-hybrid screen identified an interacting protein of MdBBX7, RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1). Further examination revealed that MdMIEL1 could mediate the ubiquitination and degradation of MdBBX7 by the 26S proteasome pathway. Genetic interaction analysis suggested that MdMIEL1 acts as an upstream factor of MdBBX7. In addition, MdMIEL1 was a negative regulator of the apple drought stress response. Taken together, our results illustrate the molecular mechanisms by which the MdMIEL1–MdBBX7 module influences the response of apple to drought stress.


Sign in / Sign up

Export Citation Format

Share Document