Insulin-stimulated oocyte maturation requires insulin receptor substrate 1 and interaction with the SH2 domains of phosphatidylinositol 3-kinase

1993 ◽  
Vol 13 (11) ◽  
pp. 6653-6660
Author(s):  
L M Chuang ◽  
M G Myers ◽  
J M Backer ◽  
S E Shoelson ◽  
M F White ◽  
...  

Xenopus oocytes from unprimed frogs possess insulin-like growth factor I (IGF-I) receptors but lack insulin and IGF-I receptor substrate 1 (IRS-1), the endogenous substrate of this kinase, and fail to show downstream responses to hormonal stimulation. Microinjection of recombinant IRS-1 protein enhances insulin-stimulated phosphatidylinositol (PtdIns) 3-kinase activity and restores the germinal vesicle breakdown response. Activation of PtdIns 3-kinase results from formation of a complex between phosphorylated IRS-1 and the p85 subunit of PtdIns 3-kinase. Microinjection of a phosphonopeptide containing a pYMXM motif with high affinity for the src homology 2 (SH2) domain of PtdIns 3-kinase p85 inhibits IRS-1 association with and activation of the PtdIns 3-kinase. Formation of the IRS-1-PtdIns 3-kinase complex and insulin-stimulated PtdIns 3-kinase activation are also inhibited by microinjection of a glutathione S-transferase fusion protein containing the SH2 domain of p85. This effect occurs in a concentration-dependent fashion and results in a parallel loss of hormone-stimulated oocyte maturation. These inhibitory effects are specific and are not mimicked by glutathione S-transferase fusion proteins expressing the SH2 domains of ras-GAP or phospholipase C gamma. Moreover, injection of the SH2 domains of p85, ras-GAP, and phospholipase C gamma do not interfere with progesterone-induced oocyte maturation. These data demonstrate that phosphorylation of IRS-1 plays an essential role in IGF-I and insulin signaling in oocyte maturation and that this effect occurs through interactions of the phosphorylated YMXM/YXXM motifs of IRS-1 with SH2 domains of PtdIns 3-kinase or some related molecules.

1993 ◽  
Vol 13 (11) ◽  
pp. 6653-6660 ◽  
Author(s):  
L M Chuang ◽  
M G Myers ◽  
J M Backer ◽  
S E Shoelson ◽  
M F White ◽  
...  

Xenopus oocytes from unprimed frogs possess insulin-like growth factor I (IGF-I) receptors but lack insulin and IGF-I receptor substrate 1 (IRS-1), the endogenous substrate of this kinase, and fail to show downstream responses to hormonal stimulation. Microinjection of recombinant IRS-1 protein enhances insulin-stimulated phosphatidylinositol (PtdIns) 3-kinase activity and restores the germinal vesicle breakdown response. Activation of PtdIns 3-kinase results from formation of a complex between phosphorylated IRS-1 and the p85 subunit of PtdIns 3-kinase. Microinjection of a phosphonopeptide containing a pYMXM motif with high affinity for the src homology 2 (SH2) domain of PtdIns 3-kinase p85 inhibits IRS-1 association with and activation of the PtdIns 3-kinase. Formation of the IRS-1-PtdIns 3-kinase complex and insulin-stimulated PtdIns 3-kinase activation are also inhibited by microinjection of a glutathione S-transferase fusion protein containing the SH2 domain of p85. This effect occurs in a concentration-dependent fashion and results in a parallel loss of hormone-stimulated oocyte maturation. These inhibitory effects are specific and are not mimicked by glutathione S-transferase fusion proteins expressing the SH2 domains of ras-GAP or phospholipase C gamma. Moreover, injection of the SH2 domains of p85, ras-GAP, and phospholipase C gamma do not interfere with progesterone-induced oocyte maturation. These data demonstrate that phosphorylation of IRS-1 plays an essential role in IGF-I and insulin signaling in oocyte maturation and that this effect occurs through interactions of the phosphorylated YMXM/YXXM motifs of IRS-1 with SH2 domains of PtdIns 3-kinase or some related molecules.


1994 ◽  
Vol 14 (8) ◽  
pp. 5466-5473 ◽  
Author(s):  
M C Maa ◽  
T H Leu ◽  
B J Trandel ◽  
J H Chang ◽  
S J Parsons

p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.


1994 ◽  
Vol 14 (8) ◽  
pp. 5466-5473
Author(s):  
M C Maa ◽  
T H Leu ◽  
B J Trandel ◽  
J H Chang ◽  
S J Parsons

p62 is a highly tyrosyl phosphorylated protein that was first identified in immunoprecipitates of the GTPase-activating protein (GAP) of p21ras from cells transformed by oncogenic nonreceptor tyrosine kinases or stimulated through tyrosine kinase receptors (C. Ellis, M. Moran, F. McCormick, and T. Pawson, Nature 343:377-381, 1991). In this article we describe a highly related 62-kDa protein that becomes tyrosyl phosphorylated and associated with phospholipase C gamma (PLC gamma) in C3H10T1/2 cells stimulated with epidermal growth factor (EGF) or transformed by v-src. GAP-associated and PLC gamma-associated p62 comigrated in one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and exhibited nearly identical phosphotryptic peptide patterns. That the association of p62 with PLC gamma was direct and not mediated through binding of GAP-p62 to PLC gamma or to the EGF receptor (and coprecipitation of the receptor with PLC gamma) was demonstrated by (i) the inability to detect GAP in PLC gamma immunocomplexes or PLC gamma in GAP immunocomplexes, (ii) the association of p62 with PLC gamma in v-src-transformed cells in the absence of EGF stimulation, and (iii) in vitro solution binding and direct blotting of p62 with a glutathione S-transferase fusion protein containing the Src homology 2 (SH2) domains of PLC gamma. Unlike GAP, whose N-terminal SH2 mediates the interaction between GAP and p62, PLC gamma was found to require both its N- and C-terminal SH2 regions for p62 binding. These studies demonstrate that a protein identical to or highly related to GAP-associated p62 binds PLC gamma and suggest a means by which "cross-talk" between PLC gamma- and GAP-mediated signalling may occur.


1995 ◽  
Vol 15 (7) ◽  
pp. 3563-3570 ◽  
Author(s):  
X J Liu ◽  
A Sorisky ◽  
L Zhu ◽  
T Pawson

An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.


2016 ◽  
Author(s):  
Jessica Sanders ◽  
Ethan Bateson ◽  
Yuansong Yu ◽  
Michail Nomikos ◽  
Antony Lai ◽  
...  

1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203 ◽  
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


1990 ◽  
Vol 10 (1) ◽  
pp. 310-315
Author(s):  
C B Barrett ◽  
R M Schroetke ◽  
F A Van der Hoorn ◽  
S K Nordeen ◽  
J L Maller

Treatment with insulin or progesterone or microinjection of the transforming protein product of Ha-rasVal-12,Thr-59 (p21) is known to induce germinal vesicle breakdown in Xenopus oocytes. We have investigated the effect of p21 on S6 kinase and the H1 histone kinase of maturation-promoting factor in the presence and absence of antisense oligonucleotides against the c-mosxe proto-oncogene. Injection of p21 led to a rapid increase in S6 phosphorylation, with kinetics similar to those previously observed with insulin. Microinjection of c-mosxe antisense oligonucleotides inhibited germinal vesicle breakdown induced by p21 and totally abolished S6 kinase activation by insulin or progesterone but only partially inhibited activation by p21. However, the activation of p34cdc2 protein kinase by all three stimuli was blocked by antisense oligonucleotides. The results suggest that in oocyte maturation c-mosxe functions downstream of p21 but upstream of p34cdc2 and S6 kinase activation, although not all p21-induced events require c-mosxe.


2000 ◽  
Vol 6 (S2) ◽  
pp. 964-965
Author(s):  
Qing-Yuan Sun ◽  
Randall S. Prather ◽  
Heide Schatten

Mammalian oocytes are arrested at the diplotene stage of the first meiotic division. Release of oocytes from their follicles induces meiotic resumption characterized by germinal vesicle breakdown (GVBD), followed by the chromosome formation and metaphase I spindle organization and finally the extrusion the first polar body. Recently it was shown that cellpermeant antioxidants significantly inhibit spontaneous resumption of meiosis in mouse oocytes, which may indicate a role of oxygen radicals in oocyte maturation. The regulation of mouse oocyte meiosis resumption is different from that of large domestic animals in that GVBD is independent of Ca2+ and protein synthesis. The present study investigated the influence of two cell-permeant antioxidants, 2(3)-ter-butyl-4-hydroxyanisole (BHA) and nordihydroguaiaretic acid (NDGA), on porcine oocyte meiosis resumption, chromatin behavior and spindle assembly. Our findings revealed a different role of antioxidants in porcine oocyte meiosis resumption than in mouse oocyte maturation.


2006 ◽  
Vol 189 (2) ◽  
pp. 341-353 ◽  
Author(s):  
A Mishra ◽  
K P Joy

An HPLC method was used to tentatively identify progesterone (P4) and its metabolites (17-hydroxyprogesterone (17-P4) and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)), corticosteroids (cortisol and corticosterone) and testosterone in ovary/follicular preparations of the catfish Heteropneustes fossilis associated with in vivo or in vitro oocyte maturation/ovulation. A single i.p. injection of human chorionic gonadotrophin (100 IU/fish, sampled at 0, 8 and 16 h) induced oocyte maturation and ovulation, which coincided with significant and progressive increases in 17,20β-P, and P4 and 17-P4, the precursors of the former. Both cortisol and corticosterone also increased significantly. Conversely, testosterone decreased significantly and progressively over time. Under in vitro conditions, incubation of post-vitellogenic (intact) follicles or follicular envelope (layer) with 2-hydroxyoestradiol (2-OHE2, 5 μM for 0, 6 and 24 h) elicited a sharp significant increase in 17,20β-P, the increase being higher in the follicular envelope incubate. P4 and 17-P4 also registered significant increases over the time with the peak values at 24 h. Cortisol and corticosterone increased significantly in the intact follicle, but not in the follicular envelope incubate. Testosterone decreased significantly in the intact follicle, but increased significantly (24 h) in the follicular envelope incubate. Coincident with these changes, the percentage of germinal vesicle breakdown (GVBD) increased over the time in the intact follicle incubate (48.9% at 6 h and 79.8% at 24 h). Denuded oocytes on incubation with 2-OHE2 (5 μM) did not produce any significant change in the percentage of GVBD or in the steroid profile. While corticosterone and 17,20β-P were undetected, P4, 17-P4, cortisol and testosterone were detected in low amounts. The results show that the 2-OHE2-induced GVBD response seems to be mediated through the production of 17,20β-P and corticosteroids. It is suggested that hydroxyoestrogens seem to be a component in the gonadotrophin cascade of regulation of oocyte maturation/ovulation in the catfish.


Sign in / Sign up

Export Citation Format

Share Document