Ha-rasVal-12,Thr-59 activates S6 kinase and p34cdc2 kinase in Xenopus oocytes: evidence for c-mosxe-dependent and -independent pathways

1990 ◽  
Vol 10 (1) ◽  
pp. 310-315
Author(s):  
C B Barrett ◽  
R M Schroetke ◽  
F A Van der Hoorn ◽  
S K Nordeen ◽  
J L Maller

Treatment with insulin or progesterone or microinjection of the transforming protein product of Ha-rasVal-12,Thr-59 (p21) is known to induce germinal vesicle breakdown in Xenopus oocytes. We have investigated the effect of p21 on S6 kinase and the H1 histone kinase of maturation-promoting factor in the presence and absence of antisense oligonucleotides against the c-mosxe proto-oncogene. Injection of p21 led to a rapid increase in S6 phosphorylation, with kinetics similar to those previously observed with insulin. Microinjection of c-mosxe antisense oligonucleotides inhibited germinal vesicle breakdown induced by p21 and totally abolished S6 kinase activation by insulin or progesterone but only partially inhibited activation by p21. However, the activation of p34cdc2 protein kinase by all three stimuli was blocked by antisense oligonucleotides. The results suggest that in oocyte maturation c-mosxe functions downstream of p21 but upstream of p34cdc2 and S6 kinase activation, although not all p21-induced events require c-mosxe.

1990 ◽  
Vol 10 (1) ◽  
pp. 310-315 ◽  
Author(s):  
C B Barrett ◽  
R M Schroetke ◽  
F A Van der Hoorn ◽  
S K Nordeen ◽  
J L Maller

Treatment with insulin or progesterone or microinjection of the transforming protein product of Ha-rasVal-12,Thr-59 (p21) is known to induce germinal vesicle breakdown in Xenopus oocytes. We have investigated the effect of p21 on S6 kinase and the H1 histone kinase of maturation-promoting factor in the presence and absence of antisense oligonucleotides against the c-mosxe proto-oncogene. Injection of p21 led to a rapid increase in S6 phosphorylation, with kinetics similar to those previously observed with insulin. Microinjection of c-mosxe antisense oligonucleotides inhibited germinal vesicle breakdown induced by p21 and totally abolished S6 kinase activation by insulin or progesterone but only partially inhibited activation by p21. However, the activation of p34cdc2 protein kinase by all three stimuli was blocked by antisense oligonucleotides. The results suggest that in oocyte maturation c-mosxe functions downstream of p21 but upstream of p34cdc2 and S6 kinase activation, although not all p21-induced events require c-mosxe.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203 ◽  
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


1999 ◽  
Vol 112 (13) ◽  
pp. 2177-2184 ◽  
Author(s):  
N. Ohan ◽  
Y. Agazie ◽  
C. Cummings ◽  
R. Booth ◽  
M. Bayaa ◽  
...  

We recently identified Xenopus Rho-associated protein kinase alpha (xROKalpha) as a Xenopus insulin receptor substrate-1 binding protein and demonstrated that the non-catalytic carboxyl terminus of xROKalpha binds Xenopus insulin receptor substrate-1 and blocks insulin-induced MAP kinase activation and germinal vesicle breakdown in Xenopus oocytes. In the current study we further examined the role of xROKalpha in insulin signal transduction in Xenopus oocytes. We demonstrate that injection of mRNA encoding the xROKalpha kinase domain or full length xROKalpha enhanced insulin-induced MAP kinase activation and germinal vesicle breakdown. In contrast, injection of a kinase-dead mutant of xROKalpha or pre-incubation of oocytes with an xROKalpha inhibitor significantly reduced insulin-induced MAP kinase activation. To further dissect the mechanism by which xROKalpha may participate in insulin signalling, we explored a potential function of xROKalpha in regulating cellular Ras function, since insulin-induced MAP kinase activation and germinal vesicle breakdown is known to be a Ras-dependent process. We demonstrate that whereas injection of mRNA encoding c-H-Ras alone induced xMAP kinase activation and GVBD in a very low percentage (about 10%) of injected oocytes, co-injection of mRNA encoding xROKalpha and c-H-Ras induced xMAP kinase activation and germinal vesicle breakdown in a significantly higher percentage (50-60%) of injected oocytes. These results suggest a novel function for xROKalpha in insulin signal transduction upstream of cellular Ras function.


1992 ◽  
Vol 12 (7) ◽  
pp. 3192-3203
Author(s):  
K M Pickham ◽  
A N Meyer ◽  
J Li ◽  
D J Donoghue

The p34cdc2 protein kinase is a component of maturation-promoting factor, the master regulator of the cell cycle in all eukaryotes. The activity of p34cdc2 is itself tightly regulated by phosphorylation and dephosphorylation. Predicted regulatory phosphorylation sites of Xenopus p34cdc2 were mutated in vitro, and in vitro-transcribed RNAs were injected into Xenopus oocytes. The cdc2 single mutants Thr-14----Ala and Tyr-15----Phe did not induce germinal vesicle breakdown (BVBD) upon microinjection into oocytes. In contrast, the cdc2 double mutant Ala-14/Phe-15 did induce GVBD. Both the Ala-14 and Ala-14/Phe-15p34cdc2 mutants were shown to coimmunoprecipitate cyclin B1 and to phosphorylate histone H1 in immune complex kinase assays. Microinjection of antisense oligonucleotides to c-mosXe was used to demonstrate the role of mos protein synthesis in the induction of GVBD by the Ala-14/Phe-15 cdc2 mutant. Thr-161 was also mutated. p34cdc2 single mutants Ala-161 and Glu-161 and triple mutants Ala-14/Phe-15/Ala-161 and Ala-14/Phe-15/Glu-161 failed to induce GVBD in oocytes and showed a decreased binding to cyclin B1 in coimmunoprecipitations. Each of the cdc2 mutants was also assayed by coinjection with cyclin B1 or c-mosXe RNA into oocytes. Several of the cdc2 mutants were found to affect the kinetics of cyclin B1 and/or mos-induced GVBD upon coinjection, although none affected the rate of progesterone-induced maturation. We demonstrate here the significance of Thr-14, Tyr-15, and Thr-161 of p34cdc2 in Xenopus oocyte maturation. In addition, these results suggest a regulatory role for mosXe in induction of oocyte maturation by the cdc2 mutant Ala-14/Phe-15.


Development ◽  
2002 ◽  
Vol 129 (9) ◽  
pp. 2129-2139 ◽  
Author(s):  
Marion Peter ◽  
Jean-Claude Labbé ◽  
Marcel Dorée ◽  
Elisabeth Mandart

The resumption of meiosis in Xenopus arrested oocytes is triggered by progesterone, which leads to polyadenylation and translation of Mos mRNA, then activation of MAPK pathway. While Mos protein kinase has been reported to be essential for re-entry into meiosis in Xenopus, arrested oocytes can undergo germinal vesicle breakdown (GVBD) independently of MAPK activation, leading us to question what the Mos target might be if Mos is still required. We now demonstrate that Mos is indeed necessary, although is independent of the MAPK cascade, for conversion of inactive pre-MPF into active MPF. We have found that Myt1 is likely to be the Mos target in this process, as Mos interacts with Myt1 in oocyte extracts and Mos triggers Myt1 phosphorylation on some sites in vivo, even in the absence of MAPK activation. We propose that Mos is involved, not only in the MAPK cascade pathway, but also in a mechanism that directly activates MPF in Xenopus oocytes.


1993 ◽  
Vol 120 (5) ◽  
pp. 1197-1202 ◽  
Author(s):  
I Daar ◽  
N Yew ◽  
G F Vande Woude

The relationship between the mos protooncogene protein and cAMP-dependent protein kinase (PKA) during the maturation of Xenopus oocytes was investigated. Microinjection of the PKA catalytic subunit (PKAc) into Xenopus oocytes inhibited oocyte maturation induced by the mos product but did not markedly affect the autophosphorylation activity of injected mos protein. By contrast, PKAc did not inhibit maturation promoting factor (MPF) activation or germinal vesicle breakdown (GVBD) that was initiated by injecting crude MPF preparations. In addition, inhibiting endogenous PKA activity by microinjecting the PKA regulatory subunit (PKAr) induced oocyte maturation that was dependent upon the presence of the endogenous mos product. Moreover, PKAr potentiated mos protein-induced MPF activation in the absence of progesterone and protein synthesis. These data are consistent with the hypothesis that progesterone-induced release from G2/M is regulated via PKAc and that PKAc negatively regulates a downstream target that is positively regulated by mos.


1993 ◽  
Vol 13 (7) ◽  
pp. 4197-4202 ◽  
Author(s):  
A J Muslin ◽  
A M MacNicol ◽  
L T Williams

In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.


Zygote ◽  
2005 ◽  
Vol 13 (3) ◽  
pp. 219-226 ◽  
Author(s):  
Tomoya Kotani ◽  
Masakane Yamashita

Vertebrate oocytes do not contain centrosomes and therefore form an acentrosomal spindle during oocyte maturation. γ-Tubulin is known to be essential for nucleation of microtubules at centrosomes, but little is known about the behaviour and role of γ-tubulin during spindle formation in oocytes. We first observed sequential localization of γ-tubulin during spindle formation in Xenopus oocytes. γ-Tubulin assembled in the basal regions of the germinal vesicle (GV) at the onset of germinal vesicle breakdown (GVBD) and remained on the microtubule-organizing centre (MTOC) until a complex of the MTOC and transient-microtubule array (TMA) reached the oocyte surface. Prior to bipolar spindle formation, oocytes formed an aggregation of microtubules and γ-tubulin was concentrated at the centre of the aggregation. At the late stage of bipolar spindle formation, γ-tubulin accumulated at each pole. Anti-dynein antibody disrupted the localization of γ-tubulin, indicating that the translocation described above is dependent on dynein activity. We finally revealed that XMAP215, a microtubule-associated protein cooperating with γ-tubulin for the assembly of microtubules, but not γ-tubulin, was phosphorylated during oocyte maturation. These results suggest that γ-tubulin is translocated by dynein to regulate microtubule organization leading to spindle formation and that modification of the molecules that cooperate with γ-tubulin, but not γ-tubulin itself, is important for microtubule reorganization.


1993 ◽  
Vol 13 (7) ◽  
pp. 4197-4202
Author(s):  
A J Muslin ◽  
A M MacNicol ◽  
L T Williams

In somatic cells, the Raf-1 serine/threonine protein kinase is activated by several polypeptide growth factors. We investigated the role of Raf-1 in progesterone-induced meiotic maturation of Xenopus laevis oocytes. Raf-1 enzymatic activity and phosphorylation (reflected by a mobility shift on sodium dodecyl sulfate gels) were increased in oocytes following progesterone stimulation. The increase in Raf-1 activity was concurrent with an elevation in the activity of mitogen-activated protein (MAP) kinase. When RNA encoding an oncogenic form of Raf-1 (v-Raf) was injected into immature oocytes, MAP kinase mobility shift, germinal vesicle breakdown, and histone H1 phosphorylation increased markedly. When RNA encoding a dominant-negative version of Raf-1 was injected, progesterone-induced oocyte maturation was blocked. When RNA encoding Xenopus mos (mosxe) was injected into oocytes, Raf-1 and MAP kinase mobility shifts were observed after several hours. Also, when antisense mosxe oligonucleotides were injected into oocytes, progesterone-induced Raf-1 and MAP kinase mobility shifts were blocked. Finally, when antisense mosxe oligonucleotides were coinjected with v-Raf RNA into oocytes, histone H1 kinase activation, germinal vesicle breakdown, and MAP kinase mobility shift occurred. These findings suggest that Raf-1 activity is required for progesterone-induced oocyte maturation and that Raf-1 is downstream of mosxe activity.


1995 ◽  
Vol 15 (7) ◽  
pp. 3563-3570 ◽  
Author(s):  
X J Liu ◽  
A Sorisky ◽  
L Zhu ◽  
T Pawson

An insulin receptor substrate 1 (IRS-1)-like cDNA was isolated from a Xenopus ovary cDNA library by low-stringency hybridization using rat IRS-1 cDNA as a probe. The deduced amino acid sequence encoded by this cDNA (termed XIRS-L) is 67% identical (77% similar) to that of rat IRS-1. Significantly, all the insulin-induced tyrosine phosphorylation sites identified in rat IRS-1, including those responsible for binding to the Src homology domains of phosphatidylinositol (PI) 3-kinase, Syp and Grb2, are conserved in XIRS-L. Both mRNA and protein corresponding to the cloned XIRS-L can be detected in immature Xenopus oocytes. Recombinant XIRS-L protein produced in insect cells or a bacterial glutathione S-transferase fusion protein containing the putative PI 3-kinase binding site can be phosphorylated in vitro by purified insulin receptor kinase (IRK) domain, and the IRK-catalyzed phosphorylation renders both proteins capable of binding PI 3-kinase in Xenopus oocyte lysates. Another glutathione S-transferase fusion protein containing the C terminus of XIRS-L and including several putative tyrosine phosphorylation sites is also phosphorylated by IRK in vitro, but it failed to bind PI 3-kinase. Insulin stimulation of immature Xenopus oocytes activates PI 3-kinase in vivo [as indicated by an elevation of PI(3,4)P2 and PI(3,4,5)P3] as well as oocyte maturation (as indicated by germinal vesicle breakdown). Pretreatment of these oocytes with wortmannin inhibited insulin-induced activation of PI 3-kinase in vivo. The same treatment also abolished insulin-induced, but not progesterone-induced, germinal vesicle breakdown. These results (i) identify an IRS-1-like molecule in immature Xenopus oocytes, suggesting that the use of IRS-1-like Scr homology 2 domain-docking proteins in signal transduction is conserved in vertebrates, and (ii) strongly implicate PI 3-kinase as an essential effector of insulin-induced oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document