scholarly journals T cell receptor-beta mRNA splicing: regulation of unusual splicing intermediates.

1993 ◽  
Vol 13 (3) ◽  
pp. 1686-1696 ◽  
Author(s):  
L Qian ◽  
L Theodor ◽  
M Carter ◽  
M N Vu ◽  
A W Sasaki ◽  
...  

The expression of functional T cell receptor-beta (TCR-beta) transcripts requires the activation of programmed DNA rearrangement events. It is not clear whether other mechanisms dictate TCR-beta mRNA levels during thymic ontogeny. We examined the potential role of RNA splicing as a regulatory mechanism. As a model system, we used an immature T cell clone, SL12.4, that transcribes a fully rearranged TCR-beta gene but essentially lacks mature 1.3-kb TCR-beta transcripts in the cytoplasm. Abundant TCR-beta splicing intermediates accumulate in the nucleus of this cell clone. These splicing intermediates result from inefficient or inhibited excision of four of the five TCR-beta introns; the only intron that is efficiently spliced is the most 5' intron, IVSL. The focal point for the regulation appears to be IVS1C beta 1 and IVS2C beta 1, since unusual splicing intermediates that have cleaved the 5' splice site but not the 3' splice site of these two introns accumulate in vivo. The block in 3' splice site cleavage is of interest since sequence analysis reveals that these two introns possess canonical splice sites. A repressional mechanism involving a labile repressor protein may be responsible for the inhibition of RNA splicing since treatment of SL12.4 cells with the protein synthesis inhibitor cycloheximide reversibly induces a rapid and dramatic accumulation of fully spliced TCR-beta transcripts in the cytoplasm, concomitant with a decline in TCR-beta pre-mRNAs in the nucleus. This inducible system may be useful for future studies analyzing the underlying molecular mechanisms that regulate RNA splicing.

1993 ◽  
Vol 13 (3) ◽  
pp. 1686-1696
Author(s):  
L Qian ◽  
L Theodor ◽  
M Carter ◽  
M N Vu ◽  
A W Sasaki ◽  
...  

The expression of functional T cell receptor-beta (TCR-beta) transcripts requires the activation of programmed DNA rearrangement events. It is not clear whether other mechanisms dictate TCR-beta mRNA levels during thymic ontogeny. We examined the potential role of RNA splicing as a regulatory mechanism. As a model system, we used an immature T cell clone, SL12.4, that transcribes a fully rearranged TCR-beta gene but essentially lacks mature 1.3-kb TCR-beta transcripts in the cytoplasm. Abundant TCR-beta splicing intermediates accumulate in the nucleus of this cell clone. These splicing intermediates result from inefficient or inhibited excision of four of the five TCR-beta introns; the only intron that is efficiently spliced is the most 5' intron, IVSL. The focal point for the regulation appears to be IVS1C beta 1 and IVS2C beta 1, since unusual splicing intermediates that have cleaved the 5' splice site but not the 3' splice site of these two introns accumulate in vivo. The block in 3' splice site cleavage is of interest since sequence analysis reveals that these two introns possess canonical splice sites. A repressional mechanism involving a labile repressor protein may be responsible for the inhibition of RNA splicing since treatment of SL12.4 cells with the protein synthesis inhibitor cycloheximide reversibly induces a rapid and dramatic accumulation of fully spliced TCR-beta transcripts in the cytoplasm, concomitant with a decline in TCR-beta pre-mRNAs in the nucleus. This inducible system may be useful for future studies analyzing the underlying molecular mechanisms that regulate RNA splicing.


1987 ◽  
Vol 84 (7) ◽  
pp. 1992-1996 ◽  
Author(s):  
H. S. Chou ◽  
S. J. Anderson ◽  
M. C. Louie ◽  
S. A. Godambe ◽  
M. R. Pozzi ◽  
...  

1992 ◽  
Vol 176 (2) ◽  
pp. 381-388 ◽  
Author(s):  
L Mori ◽  
H Loetscher ◽  
K Kakimoto ◽  
H Bluethmann ◽  
M Steinmetz

SWR/J transgenic (tg) mice were generated expressing the TCR beta chain derived from an anticollagen type II (CII) arthritogenic T cell clone. The SWR/J strain was selected because it is resistant to collagen-induced arthritis (CIA) and lacks the V beta gene segment used by the T cell clone. Expression of the tg beta chain on all thymocytes and peripheral lymph node T cells led to a more efficient anti-CII immune response, but did not confer CIA susceptibility to SWR/J mice. Nevertheless, this tg beta chain enhanced predisposition to CIA as (DBA/1 x SWR) F1 beta tg mice were more susceptible than normal F1 littermates. Our results demonstrate that the expression of the tg beta chain contributes to CIA susceptibility, but by itself it is not sufficient to overcome CIA resistance in the SWR/J strain.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 571
Author(s):  
Giovanna Linguiti ◽  
Sofia Kossida ◽  
Ciro Leonardo Pierri ◽  
Joumana Jabado-Michaloud ◽  
Geraldine Folch ◽  
...  

The bottlenose dolphin (Tursiops truncatus) belongs to the Cetartiodactyla and, similarly to other cetaceans, represents the most successful mammalian colonization of the aquatic environment. Here we report a genomic, evolutionary, and expression study of T. truncatus T cell receptor beta (TRB) genes. Although the organization of the dolphin TRB locus is similar to that of the other artiodactyl species, with three in tandem D-J-C clusters located at its 3′ end, its uniqueness is given by the reduction of the total length due essentially to the absence of duplications and to the deletions that have drastically reduced the number of the germline TRBV genes. We have analyzed the relevant mature transcripts from two subjects. The simultaneous availability of rearranged T cell receptor α (TRA) and TRB cDNA from the peripheral blood of one of the two specimens, and the human/dolphin amino acids multi-sequence alignments, allowed us to calculate the most likely interactions at the protein interface between the alpha/beta heterodimer in complex with major histocompatibility class I (MH1) protein. Interacting amino acids located in the complementarity-determining region according to IMGT numbering (CDR-IMGT) of the dolphin variable V-alpha and beta domains were identified. According to comparative modelization, the atom pair contact sites analysis between the human MH1 grove (G) domains and the T cell receptor (TR) V domains confirms conservation of the structure of the dolphin TR/pMH.


2009 ◽  
Vol 39 (5) ◽  
pp. 412-417 ◽  
Author(s):  
Fortunato Morabito ◽  
Angela Tassinari ◽  
Vincenzo Callea ◽  
Maura Brugiatelli ◽  
Maria Teresa Fierro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document