scholarly journals The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation.

1994 ◽  
Vol 14 (6) ◽  
pp. 4011-4019 ◽  
Author(s):  
J A Nelson ◽  
P B Savereide ◽  
P A Lefebvre

We have cloned and sequenced the CRY1 gene, encoding ribosomal protein S14 in Chlamydomonas reinhardtii, and found that it is highly similar to S14/rp59 proteins from other organisms, including mammals, Drosophila melanogaster, and Saccharomyces cerevisiae. We isolated a mutant strain resistant to the eukaryotic translational inhibitors cryptopleurine and emetine in which the resistance was due to a missense mutation (CRY1-1) in the CRY1 gene; resistance was dominant in heterozygous stable diploids. Cotransformation experiments using the CRY1-1 gene and the gene for nitrate reductase (NIT1) produced a low level of resistance to cryptopleurine and emetine. Resistance levels were increased when the CRY1-1 gene was placed under the control of a constitutive promoter from the ribulose bisphosphate carboxylase/oxygenase small subunit 2 (RBCS2) gene. We also found that the 5' untranslated region of the CRY1 gene was required for expression of the CRY1-1 transgene. Direct selection of emetine-resistant transformants was possible when transformed cells were first induced to differentiate into gametes by nitrogen starvation and then allowed to dedifferentiate back to vegetative cells before emetine selection was applied. With this transformation protocol, the RBCS2/CRY1-1 dominant selectable marker gene is a powerful tool for many molecular genetic applications in C. reinhardtii.

1994 ◽  
Vol 14 (6) ◽  
pp. 4011-4019
Author(s):  
J A Nelson ◽  
P B Savereide ◽  
P A Lefebvre

We have cloned and sequenced the CRY1 gene, encoding ribosomal protein S14 in Chlamydomonas reinhardtii, and found that it is highly similar to S14/rp59 proteins from other organisms, including mammals, Drosophila melanogaster, and Saccharomyces cerevisiae. We isolated a mutant strain resistant to the eukaryotic translational inhibitors cryptopleurine and emetine in which the resistance was due to a missense mutation (CRY1-1) in the CRY1 gene; resistance was dominant in heterozygous stable diploids. Cotransformation experiments using the CRY1-1 gene and the gene for nitrate reductase (NIT1) produced a low level of resistance to cryptopleurine and emetine. Resistance levels were increased when the CRY1-1 gene was placed under the control of a constitutive promoter from the ribulose bisphosphate carboxylase/oxygenase small subunit 2 (RBCS2) gene. We also found that the 5' untranslated region of the CRY1 gene was required for expression of the CRY1-1 transgene. Direct selection of emetine-resistant transformants was possible when transformed cells were first induced to differentiate into gametes by nitrogen starvation and then allowed to dedifferentiate back to vegetative cells before emetine selection was applied. With this transformation protocol, the RBCS2/CRY1-1 dominant selectable marker gene is a powerful tool for many molecular genetic applications in C. reinhardtii.


2002 ◽  
Vol 366 (3) ◽  
pp. 989-998 ◽  
Author(s):  
Cédric INVERNIZZI ◽  
Jonathan IMHOF ◽  
Gabriela BURKARD ◽  
Katharina SCHMID ◽  
Arminio BOSCHETTI

The role of the two processing sites in the precursor of the small subunit (SS) of ribulose-1,5-bisphosphate carboxylase/oxygenase (pSS) of Chlamydomonas reinhardtii was studied by introducing mutations at the cleavage sites for the stromal processing peptidases SPP-1 and SPP-2, which hydrolyse wild-type pSS (20.6kDa) to an intermediate-sized product iSS (18.3kDa) and to the mature SS (16.3kDa), respectively. The mutations introduced into cDNA resulted in exchange of (a) two amino acids flanking processing site 1, or (b) one or (c) both amino acids flanking processing site 2. Mutation (a) prevented pSS from being processed at site 1 but not from cleavage at site 2. Mutation (c) abolished the action of SPP-2 but not SPP-1. When pSS with mutation (c) was imported into isolated chloroplasts, iSS accumulated while SS formation was abolished. However, mature SS was produced even in the absence of iSS synthesis (mutation a). Import of pSS bearing mutation (b), which only partially inhibited processing at the SPP-2 site, slowed the rate of SS formation down whereas iSS and some slightly smaller derivatives accumulated. These experiments suggested that in Chlamydomonas processing of pSS can occur in two steps, whereby the first step is facultative. The same three mutations were studied in vivo after transformation of SS-deficient C. reinhardtii T60-3 with mutated genomic DNA. Growth and photosynthesis was as in control transformants, except for the slower-growing transformants (mutation c) where no mature SS was immuno-detected. However, pSS fragments with molecular masses between those of iSS and SS were present even in the ribulose-1,5-bisphosphate carboxylase/oxygenase holoenzyme.


1983 ◽  
Vol 31 (4) ◽  
pp. 395 ◽  
Author(s):  
PG Martin ◽  
AC Jennings

Ribulose bisphosphate carboxylase has been prepared from 50 species of angiosperms from 16 diverse families. In 35 preparations, well known 'bland leaf' methods were used but 15 species had 'pungent leaves' and for these a new preparative method is described. Automatic methods have been used to obtain N-terminal sequences (40 amino acids) of the small subunit (SSU) from all 50 species and the pattern of variability is discussed: 26 of 40 positions are variable to a degree similar to that found in plastocyanin and plant cytochrome c, i.e, an average of 3.7 different amino acids per variable site. These results, and the fact that sufficient protein can be obtained from 100 g of leaves, make a widespread phylogenetic survey of angiosperm SSU feasible and it is claimed that the method is at least as practicable as nucleic acid sequencing. A limited amount of sequencing has been carried out on the large subunit (LSU) but its low variability discourages a protein sequencing survey. Implications for gene structure and function are discussed and evidence is given that active LSU is derived from a precursor with 14 additional amino acids at the N-terminus. In SSU, variability of the two N- terminal amino acids suggests that they are not involved in the signals for removal of either the transit peptide or, in the RNA, of the intron, excision of one end of which depends on the codons for the invariable amino acids at positions 3 and 4. Evidence is also given that if the N-terminus of SSU is methionine, as is common, then it is modified and associated with a 'frayed' N-terminus.


1986 ◽  
Vol 34 (2) ◽  
pp. 187 ◽  
Author(s):  
PG Martin ◽  
JM Dowd ◽  
C Morris ◽  
DE Symon

The N-terminal 40 amino acid sequences of the small subunit of ribulose bisphosphate carboxylase have been determined for 13 species of Solanum, one other species of Solanaceae and two of Convolvulaceae. From these, and previously published sequences from Solanaceae, a minimal phylogenetic tree is derived. This agrees well with current taxonomy; the first dichotomy in the Solanaceae tree is between the two subfamilies Solanoideae and Cestroideae; within Solanum the subgenera Solanum and Leptostemonum separate dichotomously; within subgenus Leptostemonum the African and Asian species diverge from the Australian. Within the Australian species of subgenus Leptostemonum two most unusual substitutions have been noted. The implications for the hypotheses of a 'molecular evolutionary clock' and of biogeographical dispersal by continental drift are discussed.


Sign in / Sign up

Export Citation Format

Share Document