Processing of truncated mouse or human rRNA transcribed from ribosomal minigenes transfected into mouse cells

1994 ◽  
Vol 14 (6) ◽  
pp. 4044-4056
Author(s):  
K V Hadjiolova ◽  
A Normann ◽  
J Cavaillé ◽  
E Soupène ◽  
S Mazan ◽  
...  

The processing of pre-rRNA in eukaryotic cells involves a complex pattern of nucleolytic reactions taking place in preribosomes with the participation of several nonribosomal proteins and small nuclear RNAs. The mechanism of these reactions remains largely unknown, mainly because of the absence of faithful in vitro assays for most processing steps. We have developed a pre-rRNA processing system using the transient expression of ribosomal minigenes transfected into cultured mouse cells. Truncated mouse or human rRNA genes are faithfully transcribed under the control of mouse promoter and terminator signals. The fate of these transcripts is analyzed by the use of reporter sequences flanking the rRNA gene inserts. Both mouse and human transcripts, containing the 3' end of 18S rRNA-encoding DNA (rDNA), internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and the 5' end of 28S rDNA, are processed predominantly to molecules coterminal with the natural mature rRNAs plus minor products corresponding to cleavages within ITS 1 and ITS 2. To delineate cis-acting signals in pre-rRNA processing, we studied series of more truncated human-mouse minigenes. A faithful processing at the 18S rRNA/ITS 1 junction can be observed with transcripts containing only the 60 3'-terminal nucleotides of 18S rRNA and the 533 proximal nucleotides of ITS 1. However, further truncation of 18S rRNA (to 8 nucleotides) or of ITS 1 (to 48 nucleotides) abolishes the cleavage of the transcript. Processing at the ITS 2/28S rRNA junction is observed with truncated transcripts lacking the 5.8S rRNA plus a major part of ITS 2 and containing only 502 nucleotides of 28S rRNA. However, further truncation of the 28S rRNA segment to 217 nucleotides abolishes processing. Minigene transcripts containing most internal sequences of either ITS 1 or ITS 2, but devoid of ITS/mature rRNA junctions, are not processed, suggesting that the cleavages in vivo within either ITS segment are dependent on the presence in cis of mature rRNA sequences. These results show that the major cis signals for pre-rRNA processing at the 18S rRNA/ITS 1 or the ITS2/28S rRNA junction involve solely a limited critical length of the respective mature rRNA and adjacent spacer sequences.

1994 ◽  
Vol 14 (6) ◽  
pp. 4044-4056 ◽  
Author(s):  
K V Hadjiolova ◽  
A Normann ◽  
J Cavaillé ◽  
E Soupène ◽  
S Mazan ◽  
...  

The processing of pre-rRNA in eukaryotic cells involves a complex pattern of nucleolytic reactions taking place in preribosomes with the participation of several nonribosomal proteins and small nuclear RNAs. The mechanism of these reactions remains largely unknown, mainly because of the absence of faithful in vitro assays for most processing steps. We have developed a pre-rRNA processing system using the transient expression of ribosomal minigenes transfected into cultured mouse cells. Truncated mouse or human rRNA genes are faithfully transcribed under the control of mouse promoter and terminator signals. The fate of these transcripts is analyzed by the use of reporter sequences flanking the rRNA gene inserts. Both mouse and human transcripts, containing the 3' end of 18S rRNA-encoding DNA (rDNA), internal transcribed spacer (ITS) 1, 5.8S rDNA, ITS 2, and the 5' end of 28S rDNA, are processed predominantly to molecules coterminal with the natural mature rRNAs plus minor products corresponding to cleavages within ITS 1 and ITS 2. To delineate cis-acting signals in pre-rRNA processing, we studied series of more truncated human-mouse minigenes. A faithful processing at the 18S rRNA/ITS 1 junction can be observed with transcripts containing only the 60 3'-terminal nucleotides of 18S rRNA and the 533 proximal nucleotides of ITS 1. However, further truncation of 18S rRNA (to 8 nucleotides) or of ITS 1 (to 48 nucleotides) abolishes the cleavage of the transcript. Processing at the ITS 2/28S rRNA junction is observed with truncated transcripts lacking the 5.8S rRNA plus a major part of ITS 2 and containing only 502 nucleotides of 28S rRNA. However, further truncation of the 28S rRNA segment to 217 nucleotides abolishes processing. Minigene transcripts containing most internal sequences of either ITS 1 or ITS 2, but devoid of ITS/mature rRNA junctions, are not processed, suggesting that the cleavages in vivo within either ITS segment are dependent on the presence in cis of mature rRNA sequences. These results show that the major cis signals for pre-rRNA processing at the 18S rRNA/ITS 1 or the ITS2/28S rRNA junction involve solely a limited critical length of the respective mature rRNA and adjacent spacer sequences.


2010 ◽  
Vol 30 (13) ◽  
pp. 3142-3150 ◽  
Author(s):  
Danna G. Eickbush ◽  
Thomas H. Eickbush

ABSTRACT The non-long terminal repeat (non-LTR) retrotransposon R2 is inserted into the 28S rRNA genes of many animals. Expression of the element appears to be by cotranscription with the rRNA gene unit. We show here that processing of the rRNA cotranscript at the 5′ end of the R2 element in Drosophila simulans is rapid and utilizes an unexpected mechanism. Using RNA synthesized in vitro, the 5′ untranslated region of R2 was shown capable of rapid and efficient self-cleavage of the 28S-R2 cotranscript. The 5′ end generated in vitro by the R2 ribozyme was at the position identical to that found for in vivo R2 transcripts. The RNA segment corresponding to the R2 ribozyme could be folded into a double pseudoknot structure similar to that of the hepatitis delta virus (HDV) ribozyme. Remarkably, 21 of the nucleotide positions in and around the active site of the HDV ribozyme were identical in R2. R2 elements from other Drosophila species were also shown to encode HDV-like ribozymes capable of self-cleavage. Tracing their sequence evolution in the Drosophila lineage suggests that the extensive similarity of the R2 ribozyme from D. simulans to that of HDV was a result of convergent evolution, not common descent.


1998 ◽  
Vol 18 (4) ◽  
pp. 2360-2370 ◽  
Author(s):  
Denis L. J. Lafontaine ◽  
Thomas Preiss ◽  
David Tollervey

ABSTRACT One of the few rRNA modifications conserved between bacteria and eukaryotes is the base dimethylation present at the 3′ end of the small subunit rRNA. In the yeast Saccharomyces cerevisiae, this modification is carried out by Dim1p. We previously reported that genetic depletion of Dim1p not only blocked this modification but also strongly inhibited the pre-rRNA processing steps that lead to the synthesis of 18S rRNA. This prevented the formation of mature but unmodified 18S rRNA. The processing steps inhibited were nucleolar, and consistent with this, Dim1p was shown to localize mostly to this cellular compartment. dim1-2 was isolated from a library of conditionally lethal alleles of DIM1. In dim1-2strains, pre-rRNA processing was not affected at the permissive temperature for growth, but dimethylation was blocked, leading to strong accumulation of nondimethylated 18S rRNA. This demonstrates that the enzymatic function of Dim1p in dimethylation can be separated from its involvement in pre-rRNA processing. The growth rate ofdim1-2 strains was not affected, showing the dimethylation to be dispensable in vivo. Extracts of dim1-2 strains, however, were incompetent for translation in vitro. This suggests that dimethylation is required under the suboptimal in vitro conditions but only fine-tunes ribosomal function in vivo. Unexpectedly, when transcription of pre-rRNA was driven by a polymerase II PGKpromoter, its processing became insensitive to temperature-sensitive mutations in DIM1 or to depletion of Dim1p. This observation, which demonstrates that Dim1p is not directly required for pre-rRNA processing reactions, is consistent with the inhibition of pre-rRNA processing by an active repression system in the absence of Dim1p.


1995 ◽  
Vol 37 (4) ◽  
pp. 291-296
Author(s):  
Claudio Tavares Sacchi ◽  
Ana Paula Silva de Lemos ◽  
Silvana Tadeu Casagrande ◽  
Alice Massumi Mori ◽  
Carmecy Lopes de Almeida

In the present study we report the results of an analysis, based on ribotyping of Corynebacterium diphtheriae intermedius strains isolated from a 9 years old child with clinical diphtheria and his 5 contacts. Quantitative analysis of RFLPs of rRNA was used to determine relatedness of these 7 C.diphtheriae strains providing support data in the diphtheria epidemiology. We have also tested those strains for toxigenicity in vitro by using the Elek's gel diffusion method and in vivo by using cell culture method on cultured monkey kidney cell (VERO cells). The hybridization results revealed that the 5 C.diphtheriae strains isolated from contacts and one isolated from the clinical case (nose case strain) had identical RFLP patterns with all 4 restriction endonucleases used, ribotype B. The genetic distance from this ribotype and ribotype A (throat case strain), that we initially assumed to be responsible for the illness of the patient, was of 0.450 showing poor genetic correlation among these two ribotypes. We found no significant differences concerned to the toxin production by using the cell culture method. In conclusion, the use of RFLPs of rRNA gene was successful in detecting minor differences in closely related toxigenic C.diphtheriae intermedius strains and providing information about genetic relationships among them.


2021 ◽  
Vol 3 (1) ◽  
pp. 26
Author(s):  
Rokhmani Rokhmani ◽  
Daniel Joko Wahyono ◽  
Lilis Mulyani

Trichodina spp. are ectoparasitic pathogens of ciliata group that commonly infect both freshwater and marine fish, including gouramy fish. As a result of infection of Trichodina spp. this will lead to inhibition of fish growth and decreased fish production, resulting in low fish selling value. The rate of occurrence of Trichodina spp. that infects gurami can reach 100%. Research has been conducted to determine which one Trichodina spp. Protozoa that infects the gouramy seeds of BBI (Fish Seed Center) Kutasari Purbalingga following detection of 18S RNA gene. Gene detection method used in this research is Polymerase Chain Reaction (PCR) is a technique of DNA synthesis and amplification in vitro. This research is done following these methodes: (1) sampling of Gurami fish with purposive sampling which obtained from BBI Kutasari Purbalingga, (2) isolation of Trichodina spp., (3). Preparation of Trichodina spp. sample and its identification, and (4). Molecular character obervation following detection of 18S rRNA gene. This study obtained 10% percentage of detection of 18S rRNA genes of the species of Trichodina paraheterodentata that infect on the gouramy fish of Purbalingga. The percentage rate of detection of these genes is low when compared with the results of the detection of 18S rRNA Trichodina paraheterodentata gene that infects gouramy fish in Banjarnegara.


2020 ◽  
Vol 4 (4) ◽  
pp. 291-302
Author(s):  
Stephen J. Taerum ◽  
Blaire Steven ◽  
Daniel J. Gage ◽  
Lindsay R. Triplett

Protists and microscopic animals are important but poorly understood determinants of plant health. Plant-associated eukaryotes could be surveyed by high-throughput sequencing of 18S ribosomal RNA (rRNA) genes but the abundance of plant DNA in rhizosphere samples makes 18S rRNA gene amplification with universal primers unfeasible. Here, we applied a pipeline to generate peptide nucleic acid (PNA) clamps to suppress the amplification of maize host DNA during 18S rRNA gene library preparation. PNA clamps targeting the V4 and V9 hypervariable regions of the 18S rRNA gene of maize were designed and evaluated in silico, and the performance of the V9 targeting clamp PoacV9_01 was evaluated in vitro. PoacV9_01 suppressed the amplification of five crop species in quantitative PCR assays. In an 18S rRNA gene sequencing survey of the rhizosphere of maize, PoacV9_01 reduced the relative abundance of plant reads from 65 to 0.6%, while drastically increasing the number and diversity of animal, fungal, and protist reads detected. Thus, PoacV9_01 can be used to facilitate the study of eukaryotes present in grass phytobiomes. In addition, the pipeline developed here can be used to develop PNA clamps that target other plant species.


Nematology ◽  
2020 ◽  
pp. 1-9
Author(s):  
Sergei A. Subbotin ◽  
Donggeun Kim

Summary Molecular characterisation of two species of Meloinema: M. chitwoodi from Oregon, USA, and M. odesanens from South Korea, is given based on the partial 18S rRNA, the D2-D3 of 28S rRNA, ITS rRNA, and COI gene sequences. In the phylogenetic trees, Meloinema clustered with Meloidogyne, in a basal position and more closely with Meloidogyne indica and M. nataliei. The Shimodaira-Hasegawa (SH) maximum likelihood testing of an alternative topology with two gene fragments (D2-D3 of 28S rRNA and 18S rRNA genes) did not reject a sister relationship of Meloidogyne and Meloinema. Molecular results confirmed the view of Siddiqi (2000) that Meloidogyne and Meloinema evolved from a Pratylenchidae-type ancestor. The clade Meloinema + Meloidogyne + Nacobbus was rejected by the SH test of the D2-D3 of 28S rRNA gene sequence dataset. The molecular results suggested that the genus Nacobbus should be placed not in the Meloidogynidae, but in a separate subfamily, the Nacobbinae, under the family Pratylenchidae.


1979 ◽  
Vol 41 (03) ◽  
pp. 576-582
Author(s):  
A R Pomeroy

SummaryThe limitations of currently used in vitro assays of heparin have demonstrated the need for an in vivo method suitable for routine use.The in vivo method which is described in this paper uses, for each heparin preparation, four groups of five mice which are injected intravenously with heparin according to a “2 and 2 dose assay” procedure. The method is relatively rapid, requiring 3 to 4 hours to test five heparin preparations against a standard preparation of heparin. Levels of accuracy and precision acceptable for the requirements of the British Pharmacopoeia are obtained by combining the results of 3 to 4 assays of a heparin preparation.The similarity of results obtained the in vivo method and the in vitro method of the British Pharmacopoeia for heparin preparations of lung and mucosal origin validates this in vivo method and, conversely, demonstrates that the in vitro method of the British Pharmacopoeia gives a reliable estimation of the in vivo activity of heparin.


1975 ◽  
Vol 33 (03) ◽  
pp. 617-631 ◽  
Author(s):  
H. S Kingdon ◽  
R. L Lundblad ◽  
J. J Veltkamp ◽  
D. L Aronson

SummaryFactor IX concentrates manufactured from human plasma and intended for therapeutic infusion in man have been suspected for some time of being potentially thrombogenic. In the current studies, assays were carried out in vitro and in vivo for potentially thrombogenic materials. It was possible to rank the various materials tested according to the amount of thrombogenic material detected. For concentrates not containing heparin, there was substantial agreement between the in vivo and in vitro assays, with a coefficient of correlation of 0.77. There was no correlation between the assays for thrombogenicity and the antithrombin III content. We conclude that many presently available concentrates of Factor IX contain substantial amounts of potentially thrombogenic enzymes, and that this fact must be considered in arriving at the decision whether or not to use them therapeutically.


Author(s):  
Nguyễn Thỵ Đan Huyền ◽  
Lê Thanh Long ◽  
Trần Thị Thu Hà ◽  
Nguyễn Cao Cường ◽  
Nguyễn Hiền Trang
Keyword(s):  

Chủng T1 phân lập từ các mẫu ngô nếp NK66 nhiễm nấm mốc tự nhiên được sử dụng để nghiên cứu khả năng kháng nấm của dịch chiết vi khuẩn Pseudomonas putida 199B. Đặc điểm hình thái của chủng T1 đã được quan sát đại thể (màu sắc, hình dáng, kích thước khuẩn lạc) trên môi trường PDA và vi thể (hình dáng bào tử) trên kính hiển vi kết hợp so sánh với loài Aspergilus flavus đối chứng. Kết quả phân tích trình tự gen mã hóa 28S rRNA của chủng T1 cho thấy sự tương đồng trình tự cao với các trình tự tương ứng của loài Aspergilus flavus trên ngân hàng gen. Kết quả khảo sát ảnh hưởng của dịch chiết vi khuẩn P. putida lên sự phát triển của nấm A.  flavus gây bệnh trên hạt ngô sau thu hoạch và bảo quản ở điều kiện in vitro cho thấy, ở nồng độ P. putida 24% đã ức chế 74,50% sự phát triển đường kính tản nấm sau 10 ngày nuôi cấy, ức chế 79,63% sự hình thành sinh khối sợi nấm sau 7 ngày nuôi cấy. Ở điều kiện in vivo, sự nảy mầm của hạt giống ngô sau 30 ngày được tạo màng bao sinh học bằng dịch chiết vi khuẩn P. putida nồng độ 18% đạt 97,91%, tỉ lệ hạt nhiễm nấm mốc giảm còn 20% so với 72% ở mẫu đối chứng.


Sign in / Sign up

Export Citation Format

Share Document