A role for RNA synthesis in homologous pairing events

1994 ◽  
Vol 14 (9) ◽  
pp. 6097-6106
Author(s):  
H Kotani ◽  
E B Kmiec

The relationship between RNA synthesis and homologous pairing in vitro, catalyzed by RecA protein, was examined by using an established strand transfer assay system. When a short DNA duplex is mixed with single-stranded circles, RecA protein promotes the transfer of the minus strand of the duplex onto the complementary region of the plus-strand circle, with the displacement of the plus strand of the duplex. However, if minus-strand RNA is synthesized from the duplex pairing partner, joint molecules containing the RNA transcript, the plus strand of the DNA duplex, and the plus-strand circle are also observed to form. This reaction, which is dependent on RNA polymerase, sequence homology, and RecA protein, produces a joint molecule that can be dissolved by treatment with RNase H but not RNase A. Under these reaction conditions, product molecules form even when the length of shared homology between duplex and circle is reduced to 15 bp.

1994 ◽  
Vol 14 (9) ◽  
pp. 6097-6106 ◽  
Author(s):  
H Kotani ◽  
E B Kmiec

The relationship between RNA synthesis and homologous pairing in vitro, catalyzed by RecA protein, was examined by using an established strand transfer assay system. When a short DNA duplex is mixed with single-stranded circles, RecA protein promotes the transfer of the minus strand of the duplex onto the complementary region of the plus-strand circle, with the displacement of the plus strand of the duplex. However, if minus-strand RNA is synthesized from the duplex pairing partner, joint molecules containing the RNA transcript, the plus strand of the DNA duplex, and the plus-strand circle are also observed to form. This reaction, which is dependent on RNA polymerase, sequence homology, and RecA protein, produces a joint molecule that can be dissolved by treatment with RNase H but not RNase A. Under these reaction conditions, product molecules form even when the length of shared homology between duplex and circle is reduced to 15 bp.


1989 ◽  
Vol 264 (29) ◽  
pp. 17395-17400 ◽  
Author(s):  
J Ramdas ◽  
E Mythili ◽  
K Muniyappa

2000 ◽  
Vol 74 (24) ◽  
pp. 11671-11680 ◽  
Author(s):  
T. A. M. Osman ◽  
C. L. Hemenway ◽  
K. W. Buck

ABSTRACT A template-dependent RNA polymerase has been used to determine the sequence elements in the 3′ untranslated region of tobacco mosaic virus RNA that are required for promotion of minus-strand RNA synthesis and binding to the RNA polymerase in vitro. Regions which were important for minus-strand synthesis were domain D1, which is equivalent to a tRNA acceptor arm; domain D2, which is similar to a tRNA anticodon arm; an upstream domain, D3; and a central core, C, which connects domains D1, D2, and D3 and determines their relative orientations. Mutational analysis of the 3′-terminal 4 nucleotides of domain D1 indicated the importance of the 3′-terminal CA sequence for minus-strand synthesis, with the sequence CCCA or GGCA giving the highest transcriptional efficiency. Several double-helical regions, but not their sequences, which are essential for forming pseudoknot and/or stem-loop structures in domains D1, D2, and D3 and the central core, C, were shown to be required for high template efficiency. Also important were a bulge sequence in the D2 stem-loop and, to a lesser extent, a loop sequence in a hairpin structure in domain D1. The sequence of the 3′ untranslated region upstream of domain D3 was not required for minus-strand synthesis. Template-RNA polymerase binding competition experiments showed that the highest-affinity RNA polymerase binding element region lay within a region comprising domain D2 and the central core, C, but domains D1 and D3 also bound to the RNA polymerase with lower affinity.


2015 ◽  
Vol 89 (16) ◽  
pp. 8119-8129 ◽  
Author(s):  
Eytan Herzig ◽  
Nickolay Voronin ◽  
Nataly Kucherenko ◽  
Amnon Hizi

ABSTRACTThe process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting thein vitrodata. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis.IMPORTANCEReverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting thein vitrodata. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.


1998 ◽  
Vol 72 (8) ◽  
pp. 6716-6724 ◽  
Author(s):  
Jianhui Guo ◽  
Tiyun Wu ◽  
Julian Bess ◽  
Louis E. Henderson ◽  
Judith G. Levin

ABSTRACT In this report we demonstrate that human immunodeficiency virus type 1 (HIV-1) minus-strand transfer, assayed in vitro and in endogenous reactions, is greatly inhibited by actinomycin D. Previously we showed that HIV-1 nucleocapsid (NC) protein (a nucleic acid chaperone catalyzing nucleic acid rearrangements which lead to more thermodynamically stable conformations) dramatically stimulates HIV-1 minus-strand transfer by preventing TAR-dependent self-priming from minus-strand strong-stop DNA [(−) SSDNA]. Despite this potent activity, the addition of NC to in vitro reactions with actinomycin D results in only a modest increase in the 50% inhibitory concentration (IC50) for the drug. PCR analysis of HIV-1 endogenous reactions indicates that minus-strand transfer is inhibited by the drug with an IC50 similar to that observed when NC is present in the in vitro system. Taken together, these results demonstrate that NC cannot overcome the inhibitory effect of actinomycin D on minus-strand transfer. Other experiments reveal that at actinomycin D concentrations which severely curtail minus-strand transfer, neither the synthesis of (−) SSDNA nor RNase H degradation of donor RNA is affected; however, the annealing of (−) SSDNA to acceptor RNA is significantly reduced. Thus, inhibition of the annealing reaction is responsible for actinomycin D-mediated inhibition of strand transfer. Since NC (but not reverse transcriptase) is required for efficient annealing, we conclude that actinomycin D inhibits minus-strand transfer by blocking the nucleic acid chaperone activity of NC. Our findings also suggest that actinomycin D, already approved for treatment of certain tumors, might be useful in combination therapy for AIDS.


2000 ◽  
Vol 74 (22) ◽  
pp. 10359-10370 ◽  
Author(s):  
Aniko V. Paul ◽  
Elizabeth Rieder ◽  
Dong Wook Kim ◽  
Jacques H. van Boom ◽  
Eckard Wimmer

ABSTRACT The first step in the replication of the plus-stranded poliovirus RNA is the synthesis of a complementary minus strand. This process is initiated by the covalent attachment of UMP to the terminal protein VPg, yielding VPgpU and VPgpUpU. We have previously shown that these products can be made in vitro in a reaction that requires only synthetic VPg, UTP, poly(A), purified poliovirus RNA polymerase 3Dpol, and Mg2+ (A. V. Paul, J. H. van Boom, D. Filippov, and E. Wimmer, Nature 393:280–284, 1998). Since such a poly(A)-dependent process cannot confer sufficient specificity to poliovirus RNA replication, we have developed a new assay to search for a viral RNA template in conjunction with viral or cellular factors that could provide this function. We have now discovered a small RNA hairpin in the coding region of protein 2C as the site in PV1(M) RNA that is used as the primary template for the in vitro uridylylation of VPg. This hairpin has recently been described in poliovirus RNA as being an essential structure for the initiation of minus strand RNA synthesis (I. Goodfellow, Y. Chaudhry, A. Richardson, J. Meredith, J. W. Almond, W. Barclay, and D. J. Evans, J. Virol. 74:4590–4600, 2000). The uridylylation reaction either with transcripts of cre(2C) RNA or with full-length PV1(M) RNA as the template is strongly stimulated by the addition of purified viral protein 3CDpro. Deletion of the cre(2C) RNA sequences from minigenomes eliminates their ability to serve as template in the reaction. A similar signal in the coding region of VP1 in HRV14 RNA (K. L. McKnight and S. M. Lemon, RNA 4:1569–1584, 1998) and the poliovirus cre(2C) can be functionally exchanged in the assay. The mechanism by which the VPgpUpU precursor, made specifically on the cre(2C) template, might be transferred to the site where it serves as primer for poliovirus RNA synthesis, remains to be determined.


1998 ◽  
Vol 72 (8) ◽  
pp. 6546-6553 ◽  
Author(s):  
Julie A. Lemm ◽  
Anders Bergqvist ◽  
Carol M. Read ◽  
Charles M. Rice

ABSTRACT Recent insights into the early events in Sindbis virus RNA replication suggest a requirement for either the P123 or P23 polyprotein, as well as mature nsP4, the RNA-dependent RNA polymerase, for initiation of minus-strand RNA synthesis. Based on this observation, we have succeeded in reconstituting an in vitro system for template-dependent initiation of SIN RNA replication. Extracts were isolated from cells infected with vaccinia virus recombinants expressing various SIN proteins and assayed by the addition of exogenous template RNAs. Extracts from cells expressing P123C>S, a protease-defective P123 polyprotein, and nsP4 synthesized a genome-length minus-sense RNA product. Replicase activity was dependent upon addition of exogenous RNA and was specific for alphavirus plus-strand RNA templates. RNA synthesis was also obtained by coexpression of nsP1, P23C>S, and nsP4. However, extracts from cells expressing nsP4 and P123, a cleavage-competent P123 polyprotein, had much less replicase activity. In addition, a P123 polyprotein containing a mutation in the nsP2 protease which increased the efficiency of processing exhibited very little, if any, replicase activity. These results provide further evidence that processing of the polyprotein inactivates the minus-strand initiation complex. Finally, RNA synthesis was detected when soluble nsP4 was added to a membrane fraction containing P123C>S, thus providing a functional assay for purification of the nsP4 RNA polymerase.


1984 ◽  
Vol 49 (0) ◽  
pp. 513-523 ◽  
Author(s):  
S.S. Flory ◽  
J. Tsang ◽  
K. Muniyappa ◽  
M. Bianchi ◽  
D. Gonda ◽  
...  

2000 ◽  
Vol 74 (22) ◽  
pp. 10323-10331 ◽  
Author(s):  
K. Sivakumaran ◽  
Y. Bao ◽  
M. J. Roossinck ◽  
C. C. Kao

ABSTRACT Replication of viral RNA genomes requires the specific interaction between the replicase and the RNA template. Members of theBromovirus and Cucumovirus genera have a tRNA-like structure at the 3′ end of their genomic RNAs that interacts with the replicase and is required for minus-strand synthesis. InBrome mosaic virus (BMV), a stem-loop structure named C (SLC) is present within the tRNA-like region and is required for replicase binding and initiation of RNA synthesis in vitro. We have prepared an enriched replicase fraction from tobacco plants infected with the Fny isolate of Cucumber mosaic virus (Fny-CMV) that will direct synthesis from exogenously added templates. Using this replicase, we demonstrate that the SLC-like structure in Fny-CMV plays a role similar to that of BMV SLC in interacting with the CMV replicase. While the majority of CMV isolates have SLC-like elements similar to that of Fny-CMV, a second group displays sequence or structural features that are distinct but nonetheless recognized by Fny-CMV replicase for RNA synthesis. Both motifs have a 5′CA3′ dinucleotide that is invariant in the CMV isolates examined, and mutational analysis indicates that these are critical for interaction with the replicase. In the context of the entire tRNA-like element, both CMV SLC-like motifs are recognized by the BMV replicase. However, neither motif can direct synthesis by the BMV replicase in the absence of other tRNA-like elements, indicating that other features of the CMV tRNA can induce promoter recognition by a heterologous replicase.


2005 ◽  
Vol 79 (14) ◽  
pp. 9046-9053 ◽  
Author(s):  
Jen-Wen Lin ◽  
Hsiao-Ning Chiu ◽  
I-Hsuan Chen ◽  
Tzu-Chi Chen ◽  
Yau-Heiu Hsu ◽  
...  

ABSTRACT Bamboo mosaic virus (BaMV) has a single-stranded positive-sense RNA genome. The secondary structure of the 3′-terminal sequence of the minus-strand RNA has been predicted by MFOLD and confirmed by enzymatic structural probing to consist of a large, stable stem-loop and a small, unstable stem-loop. To identify the promoter for plus-strand RNA synthesis in this region, transcripts of 39, 77, and 173 nucleotides (Ba-39, Ba-77, and Ba-173, respectively) derived from the 3′ terminus of the minus-strand RNA were examined by an in vitro RNA-dependent RNA polymerase assay for the ability to direct RNA synthesis. Ba-77 and Ba-39 appeared to direct the RNA synthesis efficiently, while Ba-173 failed. Ba-77/Δ5, with a deletion of the 3′-terminal UUUUC sequence in Ba-77, directed the RNA synthesis only to 7% that of Ba-77. However, Ba-77/Δ16 and Ba-77/Δ31, with longer deletions but preserving the terminal UUUUC sequence of Ba-77, restored the template activity to about 60% that of the wild type. Moreover, mutations that changed the sequence in the stem of the large stem-loop interfered with the efficiency of RNA synthesis and RNA accumulation in vivo. The mutant with an internal deletion in the region between the terminal UUUUC sequence and the large stem-loop reduced the viral RNA accumulation in protoplasts, but mutants with insertions did not. Taken together, these results suggest that three cis-acting elements in the 3′ end of the minus-strand RNA, namely, the terminal UUUUC sequence, the sequence in the large stem-loop, and the distance between these two regions, are involved in modulating the efficiency of BaMV plus-strand viral RNA synthesis.


Sign in / Sign up

Export Citation Format

Share Document