scholarly journals Actinomycin D Inhibits Human Immunodeficiency Virus Type 1 Minus-Strand Transfer in In Vitro and Endogenous Reverse Transcriptase Assays

1998 ◽  
Vol 72 (8) ◽  
pp. 6716-6724 ◽  
Author(s):  
Jianhui Guo ◽  
Tiyun Wu ◽  
Julian Bess ◽  
Louis E. Henderson ◽  
Judith G. Levin

ABSTRACT In this report we demonstrate that human immunodeficiency virus type 1 (HIV-1) minus-strand transfer, assayed in vitro and in endogenous reactions, is greatly inhibited by actinomycin D. Previously we showed that HIV-1 nucleocapsid (NC) protein (a nucleic acid chaperone catalyzing nucleic acid rearrangements which lead to more thermodynamically stable conformations) dramatically stimulates HIV-1 minus-strand transfer by preventing TAR-dependent self-priming from minus-strand strong-stop DNA [(−) SSDNA]. Despite this potent activity, the addition of NC to in vitro reactions with actinomycin D results in only a modest increase in the 50% inhibitory concentration (IC50) for the drug. PCR analysis of HIV-1 endogenous reactions indicates that minus-strand transfer is inhibited by the drug with an IC50 similar to that observed when NC is present in the in vitro system. Taken together, these results demonstrate that NC cannot overcome the inhibitory effect of actinomycin D on minus-strand transfer. Other experiments reveal that at actinomycin D concentrations which severely curtail minus-strand transfer, neither the synthesis of (−) SSDNA nor RNase H degradation of donor RNA is affected; however, the annealing of (−) SSDNA to acceptor RNA is significantly reduced. Thus, inhibition of the annealing reaction is responsible for actinomycin D-mediated inhibition of strand transfer. Since NC (but not reverse transcriptase) is required for efficient annealing, we conclude that actinomycin D inhibits minus-strand transfer by blocking the nucleic acid chaperone activity of NC. Our findings also suggest that actinomycin D, already approved for treatment of certain tumors, might be useful in combination therapy for AIDS.

2000 ◽  
Vol 74 (18) ◽  
pp. 8324-8334 ◽  
Author(s):  
Yuki Ohi ◽  
Jared L. Clever

ABSTRACT The genome of human immunodeficiency virus type 1 (HIV-1) contains two direct repeats (R) of 97 nucleotides at each end. These elements are of critical importance during the first-strand transfer of reverse transcription, during which the minus-strand strong-stop DNA (−sssDNA) is transferred from the 5′ end to the 3′ end of the genomic RNA. This transfer is critical for the synthesis of the full-length minus-strand cDNA. These repeats also contain a variety of other functional domains involved in many aspects of the viral life cycle. In this study, we have introduced a series of mutations into the 5′, the 3′, or both R sequences designed to avoid these other functional domains. Using a single-round infectivity assay, we determined the ability of these mutants to undergo the various steps of reverse transcription utilizing a semiquantitative PCR analysis. We find that mutations within the first 10 nucleotides of either the 5′ or the 3′ R sequence resulted in virions that were markedly defective for reverse transcription in infected cells. These mutations potentially introduce mismatches between the full-length −sssDNA and 3′ acceptor R. Even mutations that would create relatively small mismatches, as little as 3 bp, resulted in inefficient reverse transcription. In contrast, virions containing identically mutated R elements were not defective for reverse transcription or infectivity. Using an endogenous reverse transcription assay with disrupted virus, we show that virions harboring the 5′ or the 3′ R mutations were not intrinsically defective for DNA synthesis. Similarly sized mismatches slightly further downstream in either the 5′, the 3′, or both R sequences were not detrimental to continued reverse transcription in infected cells. These data are consistent with the idea that certain mismatches within 10 nucleotides downstream of the U3-R junction in HIV-1 cause defects in the stability of the cDNA before or during the first-strand transfer of reverse transcription leading to the rapid disappearance of the −sssDNA in infected cells. These data also suggest that the great majority of first-strand transfers in HIV-1 occur after the copying of virtually the entire 5′ R.


2000 ◽  
Vol 74 (19) ◽  
pp. 8980-8988 ◽  
Author(s):  
Jianhui Guo ◽  
Tiyun Wu ◽  
Jada Anderson ◽  
Bradley F. Kane ◽  
Donald G. Johnson ◽  
...  

ABSTRACT The nucleocapsid protein (NC) of human immunodeficiency virus type 1 (HIV-1) has two zinc fingers, each containing the invariant metal ion binding residues CCHC. Recent reports indicate that mutations in the CCHC motifs are deleterious for reverse transcription in vivo. To identify reverse transcriptase (RT) reactions affected by such changes, we have probed zinc finger functions in NC-dependent RT-catalyzed HIV-1 minus- and plus-strand transfer model systems. Our approach was to examine the activities of wild-type NC and a mutant in which all six cysteine residues were replaced by serine (SSHS NC); this mutation severely disrupts zinc coordination. We find that the zinc fingers contribute to the role of NC in complete tRNA primer removal from minus-strand DNA during plus-strand transfer. Annealing of the primer binding site sequences in plus-strand strong-stop DNA [(+) SSDNA] to its complement in minus-strand acceptor DNA is not dependent on NC zinc fingers. In contrast, the rate of annealing of the complementary R regions in (−) SSDNA and 3′ viral RNA during minus-strand transfer is approximately eightfold lower when SSHS NC is used in place of wild-type NC. Moreover, unlike wild-type NC, SSHS NC has only a small stimulatory effect on minus-strand transfer and is essentially unable to block TAR-induced self-priming from (−) SSDNA. Our results strongly suggest that NC zinc finger structures are needed to unfold highly structured RNA and DNA strand transfer intermediates. Thus, it appears that in these cases, zinc finger interactions are important components of NC nucleic acid chaperone activity.


2002 ◽  
Vol 76 (22) ◽  
pp. 11757-11762 ◽  
Author(s):  
Ya-Xiong Feng ◽  
Tong Li ◽  
Stephen Campbell ◽  
Alan Rein

ABSTRACT Recombinant human immunodeficiency virus type 1 (HIV-1) Gag protein can assemble into virus-like particles (VLPs) in suitable buffer conditions with nucleic acid. We have explored the role of nucleic acid in this assembly process. HIV-1 nucleocapsid protein, a domain of Gag, can bind to oligodeoxynucleotides with the sequence d(TG)n with more salt resistance than to d(A)n oligonucleotides. We found that assembly of VLPs on d(TG)n oligonucleotides was more salt resistant than assembly on d(A)n; thus, the oligonucleotides do not simply neutralize basic residues in Gag but provide a binding surface upon which Gag molecules assemble into VLPs. We also found that Gag molecules could be “trapped” on internal d(TG)n sequences within 40-base oligonucleotides, rendering them unable to take part in assembly. Thus, assembly on oligonucleotides requires that Gag proteins bind near the ends of the nucleic acid, and binding of Gag to internal d(TG)n sequences is apparently cooperative. Finally, we showed that nucleic acids in VLPs can exchange with nucleic acids in solution; there is a hierarchy of preferences in these exchange reactions. The results are consistent with an equilibrium model of in vitro assembly and may help to explain how Gag molecules in vivo select genomic RNA despite the presence in the cell of a vast excess of cellular mRNA molecules.


1999 ◽  
Vol 73 (3) ◽  
pp. 2270-2279 ◽  
Author(s):  
Stephen Campbell ◽  
Alan Rein

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) normally assembles into particles of 100 to 120 nm in diameter by budding through the plasma membrane of the cell. The Gag polyprotein is the only viral protein that is required for the formation of these particles. We have used an in vitro assembly system to examine the assembly properties of purified, recombinant HIV-1 Gag protein and of Gag missing the C-terminal p6 domain (Gag Δp6). This system was used previously to show that the CA-NC fragment of HIV-1 Gag assembled into cylindrical particles. We now report that both HIV-1 Gag and Gag Δp6 assemble into small, 25- to 30-nm-diameter spherical particles in vitro. The multimerization of Gag Δp6 into units larger than dimers and the formation of spherical particles required nucleic acid. Removal of the nucleic acid with NaCl or nucleases resulted in the disruption of the multimerized complexes. We conclude from these results that (i) N-terminal extension of HIV-1 CA-NC to include the MA domain results in the formation of spherical, rather than cylindrical, particles; (ii) nucleic acid is required for the assembly and maintenance of HIV-1 Gag Δp6 virus-like particles in vitro and possibly in vivo; (iii) a wide variety of RNAs or even short DNA oligonucleotides will support assembly; (iv) protein-protein interactions within the particle must be relatively weak; and (v) recombinant HIV-1 Gag Δp6 and nucleic acid are not sufficient for the formation of normal-sized particles.


1999 ◽  
Vol 73 (8) ◽  
pp. 6573-6581 ◽  
Author(s):  
Christine M. Smith ◽  
Jeffrey S. Smith ◽  
Monica J. Roth

ABSTRACT Retroviral reverse transcriptase (RT) enzymes are responsible for transcribing viral RNA into double-stranded DNA. An in vitro assay to analyze the second strand transfer event during human immunodeficiency virus type 1 (HIV-1) reverse transcription has been developed. Model substrates were constructed which mimic the viral intermediate found during plus-strand strong-stop synthesis. Utilizing wild-type HIV-1 RT and a mutant E478Q RT, the requirement for RNase H activity in this strand transfer event was analyzed. In the presence of Mg2+, HIV-1 RT was able to fully support the second strand transfer reaction in vitro. However, in the presence of Mg2+, the E478Q RT mutant had no detectable RNase H activity and was unable to support strand transfer. In the presence of Mn2+, the E478Q RT yields the initial endoribonucleolytic cleavage at the penultimate C residue of the tRNA primer yet does not support strand transfer. This suggests that subsequent degradation of the RNA primer by the RNase H domain was required for strand transfer. In reactions in which the E478Q RT was complemented with exogenous RNase H enzymes, strand transfer was supported. Additionally, we have shown that HIV-1 RT is capable of supporting strand transfer with substrates that mimic tRNAHis as well as the authentic tRNA3 Lys.


1999 ◽  
Vol 73 (6) ◽  
pp. 4794-4805 ◽  
Author(s):  
Tiyun Wu ◽  
Jianhui Guo ◽  
Julian Bess ◽  
Louis E. Henderson ◽  
Judith G. Levin

ABSTRACT We have developed a reconstituted system which models the events associated with human immunodeficiency virus type 1 (HIV-1) plus-strand transfer. These events include synthesis of plus-strand strong-stop DNA [(+) SSDNA] from a minus-strand DNA donor template covalently attached to human tRNA3 Lys, tRNA primer removal, and annealing of (+) SSDNA to the minus-strand DNA acceptor template. Termination of (+) SSDNA synthesis at the methyl A (nucleotide 58) near the 3′ end of tRNA3 Lys reconstitutes the 18-nucleotide primer binding site (PBS). Analysis of (+) SSDNA synthesis in vitro and in HIV-1 endogenous reactions indicated another major termination site: the pseudouridine at nucleotide 55. In certain HIV-1 strains, complementarity between nucleotides 56 to 58 and the first three bases downstream of the PBS could allow all of the (+) SSDNA products to be productively transferred. Undermodification of the tRNA may be responsible for termination beyond the methyl A. In studies of tRNA removal, we find that initial cleavage of the 3′ rA by RNase H is not sufficient to achieve successful strand transfer. The RNA-DNA hybrid formed by the penultimate 17 bases of tRNA still annealed to (+) SSDNA must also be destabilized. This can occur by removal of additional 3′-terminal bases by RNase H (added either in cis ortrans). Alternatively, the nucleic acid chaperone activity of nucleocapsid protein (NC) can catalyze this destabilization. NC stimulates annealing of the complementary PBS sequences in (+) SSDNA and the acceptor DNA template. Reverse transcriptase also promotes annealing but to a lesser extent than NC.


1999 ◽  
Vol 73 (5) ◽  
pp. 4251-4256 ◽  
Author(s):  
Ya-Xiong Feng ◽  
Stephen Campbell ◽  
Demetria Harvin ◽  
Bernard Ehresmann ◽  
Chantal Ehresmann ◽  
...  

ABSTRACT The formation of an infectious retrovirus particle requires several RNA-RNA interaction events. In particular, the genomic RNA molecules form a dimeric structure, and a cellular tRNA molecule is annealed to an 18-base complementary region (the primer binding site, or PBS) on the genomic RNA, where it will serve as primer for reverse transcription. tRNAs normally possess a highly stable secondary and tertiary structure; it seems unlikely that annealing of a tRNA molecule to the PBS, which involves unwinding of this structure, could occur efficiently at physiological temperatures without the assistance of a cofactor. Many prior studies have shown that the viral nucleocapsid (NC) protein can act as a nucleic acid chaperone (i.e., facilitate annealing events between nucleic acids), and the assays used to demonstrate this activity include its ability to catalyze dimerization of transcripts representing retroviral genomes and the annealing of tRNA to the PBS in vitro. However, mature NC is not required for these events in vivo, since protease-deficient viral mutants, in which NC is not cleaved from the parental Gag polyprotein, are known to contain dimeric RNAs with tRNA annealed to the PBS. In the present experiments, we have tested recombinant human immunodeficiency virus type 1 Gag polyprotein for nucleic acid chaperone activity. The protein was positive by all of our assays, including the ability to stimulate dimerization and to anneal tRNA to the PBS in vitro. In quantitative experiments, its activity was approximately equivalent on a molar basis to that of NC. Based on these results, we suggest that the Gag polyprotein (presumably by its NC domain) catalyzes the annealing of tRNA to the PBS during (or before) retrovirus assembly in vivo.


2002 ◽  
Vol 76 (9) ◽  
pp. 4370-4378 ◽  
Author(s):  
Jianhui Guo ◽  
Tiyun Wu ◽  
Bradley F. Kane ◽  
Donald G. Johnson ◽  
Louis E. Henderson ◽  
...  

ABSTRACT The nucleocapsid protein (NC) of human immunodeficiency virus type 1 has two zinc fingers, each containing the invariant CCHC zinc-binding motif; however, the surrounding amino acid context is not identical in the two fingers. Recently, we demonstrated that zinc coordination is required when NC unfolds complex secondary structures in RNA and DNA minus- and plus-strand transfer intermediates; this property of NC reflects its nucleic acid chaperone activity. Here we have analyzed the chaperone activities of mutants having substitutions of alternative zinc-coordinating residues, i.e., CCHH or CCCC, for the wild-type CCHC motif. We also investigated the activities of mutants that retain the CCHC motifs but have mutations that exchange or duplicate the zinc fingers (mutants 1-1, 2-1, and 2-2); these changes affect amino acid context. Our results indicate that in general, for optimal activity in an assay that measures stimulation of minus-strand transfer and inhibition of nonspecific self-priming, the CCHC motif in the zinc fingers cannot be replaced by CCHH or CCCC and the amino acid context of the fingers must be conserved. Context changes also reduce the ability of NC to facilitate primer removal in plus-strand transfer. In addition, we found that the first finger is a more crucial determinant of nucleic acid chaperone activity than the second finger. Interestingly, comparison of the in vitro results with earlier in vivo replication data raises the possibility that NC may adopt multiple conformations that are responsible for different NC functions during virus replication.


2001 ◽  
Vol 75 (23) ◽  
pp. 11874-11880 ◽  
Author(s):  
Hong-Qiang Gao ◽  
Stefan G. Sarafianos ◽  
Edward Arnold ◽  
Stephen H. Hughes

ABSTRACT The synthesis of retroviral DNA is initiated near the 5′ end of the RNA. DNA synthesis is transferred from the 5′ end to the 3′ end of viral RNA in an RNase H-dependent step. In the case of human immunodeficiency virus type 1 (HIV-1) (and certain other retroviruses that have complex secondary structures at the ends of the viral RNA), there is the possibility that DNA synthesis can lead to a self-priming event that would block viral replication. The extent of RNase H cleavage must be sufficient to allow the strand transfer reaction to occur, but not so extensive that self-priming occurs. We have used a series of model RNA substrates, with and without a 5′ cap, to investigate the rules governing RNase H cleavage at the 5′ end of the HIV-1 genome. These in vitro RNase H cleavage reactions produce an RNA fragment of the size needed to block self-priming but still allow strand transfer. The cleavages seen in vitro can be understood in light of the structure of HIV-1 reverse transcriptase in a complex with an RNA/DNA substrate.


Sign in / Sign up

Export Citation Format

Share Document