scholarly journals Yeast nucleoporin mutants are defective in pre-tRNA splicing.

1996 ◽  
Vol 16 (1) ◽  
pp. 294-301 ◽  
Author(s):  
K Sharma ◽  
E Fabre ◽  
H Tekotte ◽  
E C Hurt ◽  
D Tollervey

We have screened nucleoporin mutants for the inhibition of tRNA splicing, which has previously been proposed to be coupled to transport. Strains mutant for Nup49p or Nup116p, or genetically depleted of Nup145p, strongly accumulated unspliced pre-tRNAs. Splicing was inhibited for all 10 families of intron-containing pre-tRNA, but no effects on 5' or 3' end processing were detected. Strains mutant for Nup133p or Nsp1p accumulated lower levels of several unspliced pre-tRNAs. In contrast, no accumulation of any pre-tRNA was observed in strains mutant for Nup1p, Nup85p, or Nup100p. Other RNA processing reactions tested, pre-rRNA processing, pre-mRNA splicing, and small nucleolar and small nuclear RNA synthesis, were not clearly affected for any nucleoporin mutant. These data provide evidence for a coupling between pre-tRNA splicing and nuclear-cytoplasmic transport. Mutation of NUP49, NUP116, or NUP145 has previously been shown to lead to nuclear poly(A)+ RNA accumulation, indicating that these nucleoporins play roles in the transport of more than one class of RNA.

1989 ◽  
Vol 138 (3) ◽  
pp. 586-592 ◽  
Author(s):  
Brian P. Eliceiri ◽  
Kanakendu Choudhury ◽  
Quincy O. Scott ◽  
George L. Eliceiri

1986 ◽  
Vol 261 (7) ◽  
pp. 3142-3146 ◽  
Author(s):  
D S Morra ◽  
S H Lawler ◽  
B P Eliceiri ◽  
G L Eliceiri

1965 ◽  
Vol 49 (3_Suppl) ◽  
pp. S160 ◽  
Author(s):  
E. Stöcker ◽  
G. Dhom

1965 ◽  
Vol 26 (3) ◽  
pp. 937-958 ◽  
Author(s):  
Shuichi Karasaki

The site of H3-uridine incorporation and the fate of labeled RNA during early embryo-genesis of the newt Triturus pyrrhogaster were studied with electron microscopic autoradiography. Isolated ectodermal and mesodermal tissues from the embryos were treated in H3-uridine for 3 hours and cultured in cold solution for various periods before fixation with OsO4 and embedding in Epon. At the blastula stage, the only structural component of the nucleus seen in electron micrographs is a mass of chromatin fibrils. At the early gastrula stage, the primary nucleoli originate as small dense fibrous bodies within the chromatin material. These dense fibrous nucleoli enlarge during successive developmental stages by the acquisition of granular components 150 A in diameter, which form a layer around them. Simultaneously larger granules (300 to 500 A) appear in the chromatin, and they fill the interchromatin spaces by the tail bud stage. Autoradiographic examination has demonstrated that nuclear RNA synthesis takes place in both the nucleolus and the chromatin, with the former consistently showing more label per unit area than the latter. When changes in the distribution pattern of radioactivity were studied 3 to 24 hours after immersion in isotope at each developmental stage, the following results were obtained. Labeled RNA is first localized in the fibrous region of the nucleolus and in the peripheral region of chromatin material. After longer culture in non-radioactive medium, labeled materials also appear in the granular region of the nucleolus and in the interchromatin areas. Further incubation gives labeling in cytoplasm.


1993 ◽  
Vol 13 (9) ◽  
pp. 5377-5382
Author(s):  
B Datta ◽  
A M Weiner

U6 small nuclear RNA (snRNA) is the most highly conserved of the five spliceosomal snRNAs that participate in nuclear mRNA splicing. The proposal that U6 snRNA plays a key catalytic role in splicing [D. Brow and C. Guthrie, Nature (London) 337:14-15, 1989] is supported by the phylogenetic conservation of U6, the sensitivity of U6 to mutation, cross-linking of U6 to the vicinity of the 5' splice site, and genetic evidence for extensive base pairing between U2 and U6 snRNAs. We chose to mutate the phylogenetically invariant 41-ACAGAGA-47 and 53-AGC-55 sequences of human U6 because certain point mutations within the homologous regions of Saccharomyces cerevisiae U6 selectively block the first or second step of mRNA splicing. We found that both sequences are more tolerant to mutation in human cells (assayed by transient expression in vivo) than in S. cerevisiae (assayed by effects on growth or in vitro splicing). These differences may reflect different rate-limiting steps in the particular assays used or differential reliance on redundant RNA-RNA or RNA-protein interactions. The ability of mutations in U6 nucleotides A-45 and A-53 to selectively block step 2 of splicing in S. cerevisiae had previously been construed as evidence that these residues might participate directly in the second chemical step of splicing; an indirect, structural role seems more likely because the equivalent mutations have no obvious phenotype in the human transient expression assay.


1993 ◽  
Vol 13 (9) ◽  
pp. 5613-5619
Author(s):  
Y Takahashi ◽  
S Urushiyama ◽  
T Tani ◽  
Y Ohshima

Splicing an mRNA precursor requires multiple factors involving five small nuclear RNA (snRNA) species called U1, U2, U4, U5, and U6. The presence of mRNA-type introns in the U6 snRNA genes of some yeasts led to the hypothesis that U6 snRNA may play a catalytic role in pre-mRNA splicing and that the U6 introns occurred through reverse splicing of an intron from an mRNA precursor into a catalytic site of U6 snRNA. We characterized the U2 snRNA gene of the yeast Rhodotorula hasegawae, which has four mRNA-type introns in the U6 snRNA gene, and found an mRNA-type intron of 60 bp. The intron of the U2 snRNA gene is present in the highly conserved region immediately downstream of the branch site recognition domain. Interestingly, we found that this region can form a novel base pairing with U6 snRNA. We discuss the possible implications of these findings for the mechanisms of intron acquisition and for the role of U2 snRNA in pre-mRNA splicing.


1992 ◽  
Vol 12 (6) ◽  
pp. 2673-2680
Author(s):  
K S Tung ◽  
L L Norbeck ◽  
S L Nolan ◽  
N S Atkinson ◽  
A K Hopper

The yeast RNA1 gene encodes a cytosolic protein that affects pre-tRNA splicing, pre-rRNA processing, the production of mRNA, and the export of RNA from the nucleus to the cytosol. In an attempt to understand how the RNA1 protein affects such a diverse set of processes, we sought second-site suppressors of a mutation, rna1-1, of the RNA1 locus. Mutations in a single complementation group were obtained. These lesions proved to be in the same gene, SRN1, identified previously in a search for second-site suppressors of mutations that affect the removal of intervening sequences from pre-mRNAs. The SRN1 gene was mapped, cloned, and sequenced. DNA sequence analysis and the phenotype of disruption mutations showed that, surprisingly, SRN1 is identical to HEX2/REG1, a gene that negatively regulates glucose-repressible genes. Interestingly, SRN1 is not a negative regulator of RNA1 at the transcriptional, translational, or protein stability level. However, SRN1 does regulate the level of two newly discovered antigens, p43 and p70, one of which is not glucose repressible. These studies for the first time link RNA processing and carbon catabolite repression.


1993 ◽  
Vol 13 (5) ◽  
pp. 2666-2676 ◽  
Author(s):  
J B Cohen ◽  
S D Broz ◽  
A D Levinson

Pre-mRNA 5' splice site activity depends, at least in part, on base complementarity to U1 small nuclear RNA. In transient coexpression assays, defective 5' splice sites can regain activity in the presence of U1 carrying compensatory changes, but it is unclear whether such mutant U1 RNAs can be permanently expressed in mammalian cells. We have explored this issue to determine whether U1 small nuclear RNAs with altered specificity may be of value to rescue targeted mutant genes or alter pre-mRNA processing profiles. This effort was initiated following our observation that U1 with specificity for a splice site associated with an alternative H-ras exon substantially reduced the synthesis of the potentially oncogenic p21ras protein in transient assays. We describe the development of a mammalian complementation system that selects for removal of a splicing-defective intron placed within a drug resistance gene. Complementation was observed in proportion to the degree of complementarity between transfected mutant U1 genes and different defective splice sites, and all cells selected in this manner were found to express mutant U1 RNA. In addition, these cells showed specific activation of defective splice sites presented by an unlinked reporter gene. We discuss the prospects of this approach to permanently alter the expression of targeted genes in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document