scholarly journals DNA binding domain and subunit interactions of transcription factor IIIC revealed by dissection with poliovirus 3C protease.

1996 ◽  
Vol 16 (8) ◽  
pp. 4163-4171 ◽  
Author(s):  
Y Shen ◽  
M Igo ◽  
P Yalamanchili ◽  
A J Berk ◽  
A Dasgupta

Transcription factor IIIC (TFIIIC) is a general RNA polymerase III transcription factor that binds the B-box internal promotor element of tRNA genes and the complex of TFIIIA with a 5S rRNA gene. TFIIIC then directs the binding of TFIIIB to DNA upstream of the transcription start site. TFIIIB in turn directs RNA polymerase III binding and initiation. Human TFIIIC contains five different subunits. The 243-kDa alpha subunit can be specifically cross-linked to B-box DNA, but its sequence does not reveal a known DNA binding domain. During poliovirus infection, TFIIIC is cleaved and inactivated by the poliovirus-encoded 3C protease (3Cpro). Here we analyzed the cleavage of TFIIIC subunits by 3Cpro in vitro and during poliovirus infection of HeLa cells. Analyses of the DNA binding activities of the resulting subcomplexes indicated that an N-terminal 83-kDa domain of the alpha subunit associates with the beta subunit to generate the TFIIIC DNA binding domain. Cleavage with 3Cpro also generated an approximately 125-kDa C-terminal fragment of the alpha subunit which remained associated with the gamma and epsilon subunits.

1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1993 ◽  
Vol 13 (12) ◽  
pp. 7496-7506 ◽  
Author(s):  
X Mao ◽  
M K Darby

Transcription of the Xenopus 5S RNA gene by RNA polymerase III requires the gene-specific factor TFIIIA. To identify domains within TFIIIA that are essential for transcriptional activation, we have expressed C-terminal deletion, substitution, and insertion mutants of TFIIIA in bacteria as fusions with maltose-binding protein (MBP). The MBP-TFIIIA fusion protein specifically binds to the 5S RNA gene internal control region and complements transcription in a TFIIIA-depleted oocyte nuclear extract. Random, cassette-mediated mutagenesis of the carboxyl region of TFIIIA, which is not required for promoter binding, has defined a 14-amino-acid region that is critical for transcriptional activation. In contrast to activators of RNA polymerase II, the activity of the TFIIIA activation domain is strikingly sensitive to its position relative to the DNA-binding domain. When the eight amino acids that separate the transcription-activating domain from the last zinc finger are deleted, transcriptional activity is lost. Surprisingly, diverse amino acids can replace these eight amino acids with restoration of full transcriptional activity, suggesting that the length and not the sequence of this region is important. Insertion of amino acids between the zinc finger region and the transcription-activating domain causes a reduction in transcription proportional to the number of amino acids introduced. We propose that to function, the transcription-activating domain of TFIIIA must be correctly positioned at a minimum distance from the DNA-binding domain.


1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887 ◽  
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


1991 ◽  
Vol 11 (8) ◽  
pp. 3978-3986 ◽  
Author(s):  
F E Campbell ◽  
D R Setzer

In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.


1996 ◽  
Vol 10 (1) ◽  
pp. 16-26 ◽  
Author(s):  
T Gaal ◽  
W Ross ◽  
E E Blatter ◽  
H Tang ◽  
X Jia ◽  
...  

1987 ◽  
Vol 7 (11) ◽  
pp. 3880-3887
Author(s):  
L G Fradkin ◽  
S K Yoshinaga ◽  
A J Berk ◽  
A Dasgupta

The inhibition of transcription by RNA polymerase III in poliovirus-infected cells was studied. Experiments utilizing two different cell lines showed that the initiation step of transcription by RNA polymerase III was impaired by infection of these cells with the virus. The observed inhibition of transcription was not due to shut-off of host cell protein synthesis by poliovirus. Among four distinct components required for accurate transcription in vitro from cloned DNA templates, activities of RNA polymerase III and transcription factor TFIIIA were not significantly affected by virus infection. The activity of transcription factor TFIIIC, the limiting component required for transcription of RNA polymerase III genes, was severely inhibited in infected cells, whereas that of transcription factor TFIIIB was inhibited to a lesser extent. The sequence-specific DNA-binding of TFIIIC to the adenovirus VA1 gene internal promoter, however, was not altered by infection of cells with the virus. We conclude that (i) at least two transcription factors, TFIIIB and TFIIIC, are inhibited by infection of cells with poliovirus, (ii) inactivation of TFIIIC does not involve destruction of its DNA-binding domain, and (iii) sequence-specific DNA binding by TFIIIC may be necessary but is not sufficient for the formation of productive transcription complexes.


1991 ◽  
Vol 11 (8) ◽  
pp. 3978-3986
Author(s):  
F E Campbell ◽  
D R Setzer

In the absence of other components of the RNA polymerase III transcription machinery, transcription factor IIIA (TFIIIA) can be displaced from both strands of its DNA-binding site (the internal control region) on the somatic-type 5S rRNA gene of Xenopus borealis during transcription elongation by bacteriophage T7 RNA polymerase, regardless of which DNA strand is transcribed. Furthermore, substantial displacement is observed after the template has been transcribed only once. Since the complete 5S rRNA transcription complex has previously been shown to remain stably bound to the gene during repeated rounds of transcription by either RNA polymerase III or bacteriophage SP6 RNA polymerase, these results indicate that a factor(s) in addition to TFIIIA is required to create a complex that will remain stably associated with the template during transcription. Thus, transcription complex stability during passage of RNA polymerase cannot be explained solely on the basis of the DNA-binding properties of TFIIIA.


Biochemistry ◽  
2004 ◽  
Vol 43 (51) ◽  
pp. 16027-16035 ◽  
Author(s):  
Shinichiro Oka ◽  
Yasuhisa Shiraishi ◽  
Takuya Yoshida ◽  
Tadayasu Ohkubo ◽  
Yukio Sugiura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document