Bryostatin 1, an activator of protein kinase C, inhibits tumor promotion by phorbol esters in SENCAR mouse skin

1987 ◽  
Vol 8 (9) ◽  
pp. 1343-1346 ◽  
Author(s):  
Henry Hennings ◽  
Peter M. Blumberg ◽  
George R. Pettit ◽  
Cherry L. Herald ◽  
Robert Shores ◽  
...  
1997 ◽  
Vol 17 (6) ◽  
pp. 3418-3428 ◽  
Author(s):  
Z Lu ◽  
A Hornia ◽  
Y W Jiang ◽  
Q Zang ◽  
S Ohno ◽  
...  

Tumor-promoting phorbol esters activate, but then deplete cells of, protein kinase C (PKC) with prolonged treatment. It is not known whether phorbol ester-induced tumor promotion is due to activation or depletion of PKC. In rat fibroblasts overexpressing the c-Src proto-oncogene, the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) induced anchorage-independent growth and other transformation-related phenotypes. The appearance of transformed phenotypes induced by TPA in these cells correlated not with activation but rather with depletion of expressed PKC isoforms. Consistent with this observation, PKC inhibitors also induced transformed phenotypes in c-Src-overexpressing cells. Bryostatin 1, which inhibited the TPA-induced down-regulation of the PKCdelta isoform specifically, blocked the tumor-promoting effects of TPA, implicating PKCdelta as the target of the tumor-promoting phorbol esters. Consistent with this hypothesis, expression of a dominant negative PKCdelta mutant in cells expressing c-Src caused transformation of these cells, and rottlerin, a protein kinase inhibitor with specificity for PKCdelta, like TPA, caused transformation of c-Src-overexpressing cells. These data suggest that the tumor-promoting effect of phorbol esters is due to depletion of PKCdelta, which has an apparent tumor suppressor function.


1992 ◽  
Vol 3 (9) ◽  
pp. 1049-1056 ◽  
Author(s):  
H Eldar ◽  
E Livneh

Cell lines stably overexpressing protein kinase C (PKC)-alpha were previously described by us. These cell lines were generated by the introduction of the full length cDNA coding for PKC-alpha into Swiss/3T3 cells. Here we show that activation of PKC-alpha by phorbol-esters induced in these cells specific phosphorylation of two cellular proteins p90 and p52. Phosphorylation of p80 (MARCKS protein), previously identified as a substrate for PKC, was also enhanced. Phosphorylated p90 and p52 proteins were associated with particulate membrane-enriched fractions and were extractable with the use of nonionic detergents. Time course analysis of phorbol-ester induced phosphorylation of p90 and p52 revealed maximal stimulation of phosphorylation after 15-30 min. Phosphamino acid analysis showed that phosphorylation of p90 and p52 occurred mainly on serine residues. Phosphorylation of p52 was also on threonine residues. Whereas, phorbol ester activation induced phosphorylation of both p90 and p52, the mitogens platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) enhanced phosphorylation of p90, but not p52. Thus, our studies showed the involvement of PKC-alpha in the regulation of p90 and p52 phosphorylation and provided direct evidence for the role of PKC-alpha in cellular signaling by PDGF and FGF. Moreover, the fact that phosphorylation of p52 was specific to phorbol ester activation may suggest its involvement in tumor promotion. Characterization of p90 and p52 will enable us to reveal the phosphorylation cascade activated downstream to PKC-alpha and to determine their role in mitogenic signaling and tumor promotion.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 208-213 ◽  
Author(s):  
RM Stone ◽  
E Sariban ◽  
GR Pettit ◽  
DW Kufe

Phorbol esters induce the human HL-60 promyelocytic cell line to differentiate along a monocytic pathway. This induction of differentiation may involve phorbol ester-induced activation of the phospholipid- and calcium-dependent protein kinase C. Bryostatin 1, a macrocyclic lactone, has been shown to compete with phorbol esters for binding to protein kinase C. We have confirmed that bryostatin 1 translocates activity of protein kinase C from the cytosolic to membrane fractions of HL-60 cells. The present results also demonstrate that bryostatin 1 (10 nmol/L) induces monocytic differentiation of HL- 60 cells as determined by adherence, growth inhibition, appearance of monocyte cell surface antigens, and alpha-naphthyl acetate esterase staining. Furthermore, bryostatin 1 (10 nmol/L) downregulated c-myc expression and induced c-fos, c-fms, and tumor necrosis factor transcripts. These changes in gene expression induced by bryostatin 1 are similar to those associated with phorbol ester-induced monocytic differentiation of HL-60 cells. In contrast, exposure to a higher concentration of bryostatin 1 (100 nmol/L) had less of an effect on growth inhibition of HL-60 cells and changes in gene expression. Moreover, 100 nmol/L bryostatin 1 antagonized the cytostatic effects and adherence induced by phorbol esters. Our results thus suggest that bryostatin 1 activates HL-60 cell protein kinase C and that this effect is associated with induction of monocytic differentiation.


2007 ◽  
Vol 292 (1) ◽  
pp. C24-C32 ◽  
Author(s):  
Elizabeth V. Wattenberg

Palytoxin is a novel skin tumor promoter, which has been used to help probe the role of different types of signaling mechanisms in carcinogenesis. The multistage mouse skin model indicates that tumor promotion is an early, prolonged, and reversible phase of carcinogenesis. Understanding the molecular mechanisms underlying tumor promotion is therefore important for developing strategies to prevent and treat cancer. Naturally occurring tumor promoters that bind to specific cellular receptors have proven to be useful tools for investigating important biochemical events in multistage carcinogenesis. For example, the identification of protein kinase C as the receptor for the prototypical skin tumor promoter 12- O-tetradecanoylphorbol-13-acetate (TPA) (also called phorbol 12-myristate 13-acetate, PMA) provided key evidence that tumor promotion involves the aberrant modulation of signaling cascades that govern cell fate and function. The subsequent discovery that palytoxin, a marine toxin isolated from zoanthids (genus Palythoa), is a potent skin tumor promoter yet does not activate protein kinase C indicated that investigating palytoxin action could help reveal new aspects of tumor promotion. Interestingly, the putative receptor for palytoxin is the Na+,K+-ATPase. This review focuses on palytoxin-stimulated signaling and how palytoxin has been used to investigate alternate biochemical mechanisms by which important targets in carcinogenesis can be modulated.


Blood ◽  
1988 ◽  
Vol 72 (1) ◽  
pp. 208-213 ◽  
Author(s):  
RM Stone ◽  
E Sariban ◽  
GR Pettit ◽  
DW Kufe

Abstract Phorbol esters induce the human HL-60 promyelocytic cell line to differentiate along a monocytic pathway. This induction of differentiation may involve phorbol ester-induced activation of the phospholipid- and calcium-dependent protein kinase C. Bryostatin 1, a macrocyclic lactone, has been shown to compete with phorbol esters for binding to protein kinase C. We have confirmed that bryostatin 1 translocates activity of protein kinase C from the cytosolic to membrane fractions of HL-60 cells. The present results also demonstrate that bryostatin 1 (10 nmol/L) induces monocytic differentiation of HL- 60 cells as determined by adherence, growth inhibition, appearance of monocyte cell surface antigens, and alpha-naphthyl acetate esterase staining. Furthermore, bryostatin 1 (10 nmol/L) downregulated c-myc expression and induced c-fos, c-fms, and tumor necrosis factor transcripts. These changes in gene expression induced by bryostatin 1 are similar to those associated with phorbol ester-induced monocytic differentiation of HL-60 cells. In contrast, exposure to a higher concentration of bryostatin 1 (100 nmol/L) had less of an effect on growth inhibition of HL-60 cells and changes in gene expression. Moreover, 100 nmol/L bryostatin 1 antagonized the cytostatic effects and adherence induced by phorbol esters. Our results thus suggest that bryostatin 1 activates HL-60 cell protein kinase C and that this effect is associated with induction of monocytic differentiation.


Sign in / Sign up

Export Citation Format

Share Document