scholarly journals Identification of a Novel Slow-Muscle-Fiber Enhancer Binding Protein, MusTRD1

1998 ◽  
Vol 18 (11) ◽  
pp. 6641-6652 ◽  
Author(s):  
John V. O’Mahoney ◽  
Kim L. Guven ◽  
Jia Lin ◽  
Josephine E. Joya ◽  
C. Stephen Robinson ◽  
...  

ABSTRACT The molecular mechanisms which are responsible for restricting skeletal muscle gene expression to specific fiber types, either slow or fast twitch, are unknown. As a first step toward defining the components which direct slow-fiber-specific gene expression, we identified the sequence elements of the human troponin I slow upstream enhancer (USE) that bind muscle nuclear proteins. These include an E-box, a MEF2 element, and two other elements, USE B1 and USE C1. In vivo analysis of a mutation that disrupts USE B1 binding activity suggested that the USE B1 element is essential for high-level expression in slow-twitch muscles. This mutation does not, however, abolish slow-fiber specificity. A similar analysis indicated that the USE C1 element may play only a minor role. We report the cloning of a novel human USE B1 binding protein, MusTRD1 (muscle TFII-I repeat domain-containing protein 1), which is expressed predominantly in skeletal muscle. Significantly, MusTRD1 contains two repeat domains which show remarkable homology to the six repeat domains of the recently cloned transcription factor TFII-I. Furthermore, both TFII-I and MusTRD1 bind to similar but distinct sequences, which happen to conform with the initiator (Inr) consensus sequence. Given the roles of MEF2 and basic helix-loop-helix (bHLH) proteins in muscle gene expression, the similarity of TFII-I and MusTRD1 is intriguing, as TFII-I is believed to coordinate the interaction of MADS-box proteins, bHLH proteins, and the general transcription machinery.

2007 ◽  
Vol 27 (13) ◽  
pp. 5040-5046 ◽  
Author(s):  
Alexander Jaworski ◽  
Cynthia L. Smith ◽  
Steven J. Burden

ABSTRACT The mRNAs encoding postsynaptic components at the neuromuscular junction are concentrated in the synaptic region of muscle fibers. Accumulation of these RNAs in the synaptic region is mediated, at least in part, by selective transcription of the corresponding genes in synaptic myofiber nuclei. The transcriptional mechanisms that are responsible for synapse-specific gene expression are largely unknown, but an Ets site in the promoter regions of acetylcholine receptor (AChR) subunit genes and other “synaptic” genes is required for synapse-specific transcription. The Ets domain transcription factor GA-binding protein (GABP) has been implicated to mediate synapse-specific gene expression. Inactivation of GABPα, the DNA-binding subunit of GABP, leads to early embryonic lethality, preventing analysis of synapse formation in gabpα mutant mice. To study the role of GABP at neuromuscular synapses, we conditionally inactivated gabpα in skeletal muscle and studied synaptic differentiation and muscle gene expression. Although expression of rb, a target of GABP, is elevated in muscle tissue deficient in GABPα, clustering of synaptic AChRs at synapses and synapse-specific gene expression are normal in these mice. These data indicate that GABP is dispensable for synapse-specific transcription and maintenance of normal AChR expression at synapses.


2004 ◽  
Vol 18 (3) ◽  
pp. 522-524 ◽  
Author(s):  
Takeshi Nikawa ◽  
Kazumi Ishidoh ◽  
Katsuya Hirasaka ◽  
Ibuki Ishihara ◽  
Madoka Ikemoto ◽  
...  

2010 ◽  
Vol 88 (4) ◽  
pp. 1349-1357 ◽  
Author(s):  
D. K. Walker ◽  
E. C. Titgemeyer ◽  
T. J. Baxa ◽  
K. Y. Chung ◽  
D. E. Johnson ◽  
...  

BMC Genetics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
I-Hsuan Lin ◽  
Junn-Liang Chang ◽  
Kate Hua ◽  
Wan-Chen Huang ◽  
Ming-Ta Hsu ◽  
...  

Author(s):  
Ferdinand von Walden ◽  
Rodrigo Fernandez-Gonzalo ◽  
Jessica Maria Norrbom ◽  
Eric B. Emanuelsson ◽  
Vandre C. Figueiredo ◽  
...  

Mitochondrial derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n=10, 45 min cycling at 70% of estimated VO2max), RE (n=10, 4 sets x 7RM, leg press and knee extension), or control (CON, n=10). Skeletal muscle biopsies and blood samples were collected before and at 30 minutes and 3 hours following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S pre-rRNA, PGC-1α-total and PGC-1α-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes (VO2max, leg strength or muscle mitochondrial (mt) DNA copy number). Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN.


2018 ◽  
Vol 50 (5S) ◽  
pp. 115
Author(s):  
Adam Osmond ◽  
Robert J. Talmadge ◽  
Katie E. Bathgate ◽  
James R. Bagley ◽  
Lee E. Brown ◽  
...  

2020 ◽  
Vol 21 (18) ◽  
pp. 6715 ◽  
Author(s):  
Oxana Kapitansky ◽  
Shlomo Sragovich ◽  
Iman Jaljuli ◽  
Adva Hadar ◽  
Eliezer Giladi ◽  
...  

The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.


Sign in / Sign up

Export Citation Format

Share Document