scholarly journals E2F4 Actively Promotes the Initiation and Maintenance of Nerve Growth Factor-Induced Cell Differentiation

1999 ◽  
Vol 19 (9) ◽  
pp. 6048-6056 ◽  
Author(s):  
Stephan P. Persengiev ◽  
Ivanela I. Kondova ◽  
Daniel L. Kilpatrick

ABSTRACT E2F transcription factors play a critical role in cell cycle progression through the regulation of genes required for G1/S transition. They are also thought to be important for growth arrest; however, their potential role in the cell differentiation process has not been previously examined. Here, we demonstrate that E2F4 is highly upregulated following the neuronal differentiation of PC12 cells with nerve growth factor (NGF), while E2F1, E2F3, and E2F5 are downregulated. Immunoprecipitation and subcellular fractionation studies demonstrated that both the nuclear localization of E2F4 and its association with the Rb family member p130 increased following neuronal differentiation. The forced expression of E2F4 markedly enhanced the rate of PC12 cell differentiation induced by NGF and also greatly lowered the rate at which cells lost their neuronal phenotype following NGF removal. Importantly, this effect occurred in the absence of any significant change in the growth regulation of PC12 cells by NGF. Further, the downregulation of E2F4 expression with antisense oligodeoxynucleotides inhibited NGF-induced neurite outgrowth, indicating an important role for this factor during PC12 cell differentiation. Finally, E2F4 expression was found to increase dramatically in the developing rat cerebral cortex and cerebellum, as neuroblasts became postmitotic and initiated terminal differentiation. These findings demonstrate that, in addition to its effects on cell proliferation, E2F4 actively promotes the neuronal differentiation of PC12 cells as well as the retention of this state. Further, this effect is independent of alterations in cell growth and may involve interactions between E2F4 and the neuronal differentiation program itself. E2F4 may be an important participant in the terminal differentiation of neuroblasts.

1996 ◽  
Vol 271 (51) ◽  
pp. 33018-33025 ◽  
Author(s):  
Hideaki Kamata ◽  
Chihiro Tanaka ◽  
Hitoshi Yagisawa ◽  
Satoshi Matsuda ◽  
Yukiko Gotoh ◽  
...  

2005 ◽  
Vol 25 (12) ◽  
pp. 5106-5118 ◽  
Author(s):  
Kausik Chakrabarti ◽  
Rong Lin ◽  
Noraisha I. Schiller ◽  
Yanping Wang ◽  
David Koubi ◽  
...  

ABSTRACT Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction.


2006 ◽  
Vol 11 (9) ◽  
pp. 1097-1113 ◽  
Author(s):  
Peng Sun ◽  
Haruko Watanabe ◽  
Kazunori Takano ◽  
Takashi Yokoyama ◽  
Jun-ichi Fujisawa ◽  
...  

2004 ◽  
Vol 24 (9) ◽  
pp. 3633-3647 ◽  
Author(s):  
Linyi Chen ◽  
Christin Carter-Su

ABSTRACT The adapter protein SH2-B has been shown to bind to activated nerve growth factor (NGF) receptor TrkA and has been implicated in NGF-induced neuronal differentiation and the survival of sympathetic neurons. However, the mechanism by which SH2-B enhances and maintains neurite outgrowth is unclear. We examined the ability of truncation mutants to regulate neuronal differentiation and observed that certain truncation mutants localized in the nucleus rather than in the cytoplasm or at the plasma membrane as reported for wild-type SH2-Bβ. Addition of the nuclear export inhibitor leptomycin B caused both overexpressed wild-type and endogenous SH2-Bβ to accumulate in the nucleus of both PC12 cells and COS-7 cells as did deletion of a putative nuclear export sequence (amino acids 224 to 233) or mutation of two critical lysines in that sequence. Deleting or mutating the nuclear export signal caused SH2-Bβ to lose its ability to enhance NGF-induced differentiation of PC12 cells. Neither the NGF-induced phosphorylation of ERKs 1 and 2 nor their subcellular distribution was altered in PC12 cells stably expressing the nuclear export-defective SH2-Bβ(L231A, L233A). These data provide strong evidence that SH2-Bβ shuttles constitutively between the nucleus and cytoplasm. However, SH2-Bβ needs continuous access to the cytoplasm and/or plasma membrane to participate in NGF-induced neurite outgrowth. These data also suggest that the stimulatory effect of SH2-Bβ on NGF-induced neurite outgrowth of PC12 cells is either downstream of ERKs or via some other pathway yet to be identified.


Sign in / Sign up

Export Citation Format

Share Document