scholarly journals Evidence of Rab3A Expression, Regulation of Vesicle Trafficking, and Cellular Secretion in Response to Heregulin in Mammary Epithelial Cells

2000 ◽  
Vol 20 (23) ◽  
pp. 9092-9101 ◽  
Author(s):  
Ratna K. Vadlamudi ◽  
Rui-An Wang ◽  
Amjad H. Talukder ◽  
Liana Adam ◽  
Randy Johnson ◽  
...  

ABSTRACT Heregulin β1 (HRG), a combinatorial ligand for human growth factor receptors 3 and 4, is a regulatory polypeptide that promotes the differentiation of mammary epithelial cells into secretory lobuloalveoli. Emerging evidence suggests that the processes of secretory pathways, such as biogenesis and trafficking of vesicles in neurons and adipose cells, are regulated by the Rab family of low-molecular-weight GTPases. In this study, we identified Rab3A as a gene product induced by HRG. Full-length Rab3A was cloned from a mammary gland cDNA library. We demonstrated that HRG stimulation of human breast cancer cells and normal breast epithelial cells induces the expression of Rab3A protein and mRNA in a cycloheximide-independent manner. HRG-mediated induction of Rab3A expression was blocked by an inhibitor of phosphatidylinositol 3-kinase but not by inhibitors of mitogen-activated protein kinases p38MAPK and p42/44MAPK. Human breast epithelial cells also express other components of regulated vesicular traffic, such as rabphilin 3A, Doc2, and syntaxin. Rab3A was predominantly localized in the cytosol, and HRG stimulation of the epithelial cells also raised the level of membrane-bound Rab3A. HRG treatment induced a profound alteration in the cell morphology in which cells displayed neuron-like membrane extensions that contained Rab3A-coated, vesicle-like structures. In addition, HRG also promoted the secretion of cellular proteins from the mammary epithelial cells. The ability of HRG to modify exocytosis was verified by using a growth hormone transient-transfection system. Analysis of mouse mammary gland development revealed the expression of Rab3A in mammary epithelial cells. Furthermore, expression of the HRG transgene in Harderian tumors in mice also enhanced the expression of Rab3A. These observations provide new evidence of the existence of a Rab3A pathway in mammary epithelial cells and suggest that it may play a role in vesicle trafficking and secretion of proteins from epithelial cells in response to stimulation by the HRG expressed within the mammary mesenchyma.

1999 ◽  
Vol 112 (22) ◽  
pp. 4089-4100 ◽  
Author(s):  
A. Pauloin ◽  
S.A. Tooze ◽  
I. Michelutti ◽  
S. Delpal ◽  
M. Ollivier-Bousquet

Clathrin coated vesicles were isolated from lactating rabbit mammary gland by differential centrifugation, centrifugation on (2)H2O-sucrose cushions and Sephacryl S-1000 chromatography. Mammary epithelial cells contain an unexpectedly high quantity of clathrin coated vesicles which appear heterogeneous in size, with a mean diameter of 95.9+/-10.5 nm and a density of 1.23 g × ml(−1). Analysis of clathrin coated vesicle adaptor composition by SDS-PAGE and western blot showed that only approximately 5–10% of total APs consist of AP-2 in isolated mammary gland clathrin coated vesicles whereas it represents approximately 70% of the total APs from bovine brain clathrin coated vesicles. Cargo molecules known to be transcytosed such as IgG, IgA, and the pIgR were detected in the clathrin coated vesicles, indicating that part of this vesicle population is involved in transcytotic pathways. However, as the vast majority of the clathrin coated vesicles contained AP-1, it was likely that these clathrin coated vesicles were involved in the secretory pathway. Relatively high quantities of furin and cation-independent mannose 6-phosphate receptor were detected in mammary clathrin coated vesicles. By immuno electron microscopy, AP-1 and the cation-independent mannose 6-phosphate receptor were localized in Golgi-associated vesicles and on the membrane of secretory vesicles. The presence of AP-1 in the coat patches on the membrane of secretory vesicles containing casein micelles, and the presence of alpha(s1)-casein in mammary gland clathrin coated vesicles, support a role for AP-1 in the maturation of secretory vesicles. Our data pinpoint the importance of clathrin coated vesicles in lactating mammary epithelial cells, and suggest these vesicles are involved in the transcytotic pathway, in sorting at the trans-Golgi network and in the biogenesis of casein-containing secretory vesicles.


Author(s):  
Samantha Henry ◽  
Marygrace C. Trousdell ◽  
Samantha L. Cyrill ◽  
Yixin Zhao ◽  
Mary. J. Feigman ◽  
...  

AbstractThe developing mammary gland depends on several transcription-dependent networks to define cellular identities and differentiation trajectories. Recent technological advancements that allow for single-cell profiling of gene expression have provided an initial picture into the epithelial cellular heterogeneity across the diverse stages of gland maturation. Still, a deeper dive into expanded molecular signatures would improve our understanding of the diversity of mammary epithelial and non-epithelial cellular populations across different tissue developmental stages, mouse strains and mammalian species. Here, we combined differential mammary gland fractionation approaches and transcriptional profiles obtained from FACS-isolated mammary cells to improve our definitions of mammary-resident, cellular identities at the single-cell level. Our approach yielded a series of expression signatures that illustrate the heterogeneity of mammary epithelial cells, specifically those of the luminal fate, and uncovered transcriptional changes to their lineage-defined, cellular states that are induced during gland development. Our analysis also provided molecular signatures that identified non-epithelial mammary cells, including adipocytes, fibroblasts and rare immune cells. Lastly, we extended our study to elucidate expression signatures of human, breast-resident cells, a strategy that allowed for the cross-species comparison of mammary epithelial identities. Collectively, our approach improved the existing signatures of normal mammary epithelial cells, as well as elucidated the diversity of non-epithelial cells in murine and human breast tissue. Our study provides a useful resource for future studies that use single-cell molecular profiling strategies to understand normal and malignant breast development.


Oncotarget ◽  
2017 ◽  
Vol 8 (55) ◽  
pp. 93688-93703 ◽  
Author(s):  
Rosa Martín-Pérez ◽  
Rosario Yerbes ◽  
Rocío Mora-Molina ◽  
Ana Cano-González ◽  
Joaquín Arribas ◽  
...  

2004 ◽  
Vol 24 (12) ◽  
pp. 5548-5564 ◽  
Author(s):  
Jason D. Prescott ◽  
Karen S. N. Koto ◽  
Meenakshi Singh ◽  
Arthur Gutierrez-Hartmann

ABSTRACT Several different transcription factors, including estrogen receptor, progesterone receptor, and ETS family members, have been implicated in human breast cancer, indicating that transcription factor-induced alterations in gene expression underlie mammary cell transformation. ESE-1 is an epithelium-specific ETS transcription factor that contains two distinguishing domains, a serine- and aspartic acid-rich (SAR) domain and an AT hook domain. ESE-1 is abundantly expressed in human breast cancer and trans-activates epithelium-specific gene promoters in transient transfection assays. While it has been presumed that ETS factors transform mammary epithelial cells via their nuclear transcriptional functions, here we show (i) that ESE-1 protein is cytoplasmic in human breast cancer cells; (ii) that stably expressed green fluorescent protein-ESE-1 transforms MCF-12A human mammary epithelial cells; and (iii) that the ESE-1 SAR domain, acting in the cytoplasm, is necessary and sufficient to mediate this transformation. Deletion of transcriptional regulatory or nuclear localization domains does not impair ESE-1-mediated transformation, whereas fusing the simian virus 40 T-antigen nuclear localization signal to various ESE-1 constructs, including the SAR domain alone, inhibits their transforming capacity. Finally, we show that the nuclear localization of ESE-1 protein induces apoptosis in nontransformed mammary epithelial cells via a transcription-dependent mechanism. Together, our studies reveal two distinct ESE-1 functions, apoptosis and transformation, where the ESE-1 transcription activation domain contributes to apoptosis and the SAR domain mediates transformation via a novel nonnuclear, nontranscriptional mechanism. These studies not only describe a unique ETS factor transformation mechanism but also establish a new paradigm for cell transformation in general.


2021 ◽  
pp. 105367
Author(s):  
Peerzada Tajamul Mumtaz ◽  
Qamar Taban ◽  
Basharat Bhat ◽  
Syed Mudasir Ahmad ◽  
Mashooq Ahmad Dar ◽  
...  

2021 ◽  
Author(s):  
Zhiyun Hao ◽  
Yuzhu Luo ◽  
Jiqing Wang ◽  
Jon Hickford ◽  
Huitong Zhou ◽  
...  

In our previous studies, microRNA-432 (miR-432) was found to be one of differentially expressed miRNAs in ovine mammary gland between the two breeds of lactating sheep with different milk production...


Sign in / Sign up

Export Citation Format

Share Document