scholarly journals TATA-Binding Protein Mutants That Increase Transcription from Enhancerless and Repressed Promoters In Vivo

2000 ◽  
Vol 20 (5) ◽  
pp. 1478-1488 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Kevin Struhl

ABSTRACT Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.

1999 ◽  
Vol 19 (6) ◽  
pp. 3951-3957 ◽  
Author(s):  
Ryan T. Ranallo ◽  
Kevin Struhl ◽  
Laurie A. Stargell

ABSTRACT Using an intragenic complementation screen, we have identified a temperature-sensitive TATA-binding protein (TBP) mutant (K151L,K156Y) that is defective for interaction with certain yeast TBP-associated factors (TAFs) at the restrictive temperature. The K151L,K156Y mutant appears to be functional for RNA polymerase I (Pol I) and Pol III transcription, and it is capable of supporting Gal4-activated and Gcn4-activated transcription by Pol II. However, transcription from certain TATA-containing and TATA-less Pol II promoters is reduced at the restrictive temperature. Immunoprecipitation analysis of extracts prepared after culturing cells at the restrictive temperature for 1 h indicates that the K151L,K156Y derivative is severely compromised in its ability to interact with TAF130, TAF90, TAF68/61, and TAF25 while remaining functional for interaction with TAF60 and TAF30. Thus, a TBP mutant that is compromised in its ability to form TFIID can support the response to Gcn4 but is defective for transcription from specific promoters in vivo.


1993 ◽  
Vol 13 (2) ◽  
pp. 1232-1237
Author(s):  
M E Clark ◽  
P M Lieberman ◽  
A J Berk ◽  
A Dasgupta

Host cell RNA polymerase II (Pol II)-mediated transcription is inhibited by poliovirus infection. This inhibition is correlated to a specific decrease in the activity of a chromatographic fraction which contains the transcription factor TFIID. To investigate the mechanism by which poliovirus infection results in a decrease of TFIID activity, we have analyzed a component of TFIID, the TATA-binding protein (TBP). Using Western immunoblot analysis, we show that TBP is cleaved in poliovirus-infected cells at the same time postinfection as when Pol II transcription is inhibited. Further, we show that one of the cleaved forms of TBP can be reproduced in vitro by incubating TBP with cloned, purified poliovirus encoded protease 3C. Protease 3C is a poliovirus-encoded protease that specifically cleaves glutamine-glycine bonds in the viral polyprotein. The cleavage of TBP by protease 3C occurs directly. Finally, incubation of an uninfected cell-derived TBP-containing fraction (TFIID) with protease 3C results in significant inhibition of Pol II-mediated transcription in vitro. These results demonstrate that a cellular transcription factor can be directly cleaved both in vitro and in vivo by a viral protease and suggest a role of the poliovirus proteinase 3C in host cell Pol II-mediated transcription shutoff.


1995 ◽  
Vol 15 (5) ◽  
pp. 2839-2848 ◽  
Author(s):  
K Melcher ◽  
S A Johnston

A major goal in understanding eukaryotic gene regulation is to identify the target(s) of transcriptional activators. Efforts to date have pointed to various candidates. Here we show that a 34-amino-acid peptide from the carboxy terminus of GAL4 is a strong activation domain (AD) and retains at least four proteins from a crude extract: the negative regulator GAL80, the TATA-binding protein (TBP), and the putative coactivators SUG1 and ADA2. TFIIB was not retained. Concentrating on TBP, we demonstrate in in vitro binding assays that its interaction with the AD is specific, direct, and salt stable up to at least 1.6 M NaCl. The effects of mutations in the GAL4 AD on transcriptional activation in vivo correlate with their affinities to TBP. A point mutation (L114K) in yeast TBP, which has been shown to compromise the mutant protein in both binding to the VP16 AD domain and activated transcription in vitro, reduces the affinity to the GAL4 AD to the same degree as to the VP16 AD. This suggests that these two prototypic activators make similar contacts with TBP.


2002 ◽  
Vol 22 (23) ◽  
pp. 8122-8134 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Zarmik Moqtaderi ◽  
Laurent Kuras ◽  
Kevin Struhl

ABSTRACT Mot1 stably associates with the TATA-binding protein (TBP), and it can dissociate TBP from DNA in an ATP-dependent manner. Mot1 acts as a negative regulator of TBP function in vitro, but genome-wide transcriptional profiling suggests that Mot1 positively affects about 10% of yeast genes and negatively affects about 5%. Unexpectedly, Mot1 associates with active RNA polymerase (Pol) II and III promoters, and it is rapidly recruited in response to activator proteins. At Pol II promoters, Mot1 association requires TBP and is strongly correlated with the level of TBP occupancy. However, the Mot1/TBP occupancy ratio at both Mot1-stimulated and Mot1-inhibited promoters is high relative to that at typical promoters, strongly suggesting that Mot1 directly affects transcriptional activity in a positive or negative manner, depending on the gene. The effect of Mot1 at the HIS3 promoter region depends on the functional quality and DNA sequence of the TATA element. Unlike TBP, Mot1 association is largely independent of the Srb4 component of Pol II holoenzyme, and it also can occur downstream of the promoter region. Mot1 removes TBP, but not TBP complexes or preinitiation complexes, from inappropriate genomic locations. Mot1 inhibits the association of NC2 with promoters, suggesting that the TBP-Mot1 and TBP-NC2 complexes compete for promoter occupancy in vivo. We speculate that Mot1 does not form transcriptionally active TBP complexes but rather regulates transcription in vivo by modulating the activity of free TBP and/or by affecting promoter DNA structure.


1993 ◽  
Vol 13 (2) ◽  
pp. 1232-1237 ◽  
Author(s):  
M E Clark ◽  
P M Lieberman ◽  
A J Berk ◽  
A Dasgupta

Host cell RNA polymerase II (Pol II)-mediated transcription is inhibited by poliovirus infection. This inhibition is correlated to a specific decrease in the activity of a chromatographic fraction which contains the transcription factor TFIID. To investigate the mechanism by which poliovirus infection results in a decrease of TFIID activity, we have analyzed a component of TFIID, the TATA-binding protein (TBP). Using Western immunoblot analysis, we show that TBP is cleaved in poliovirus-infected cells at the same time postinfection as when Pol II transcription is inhibited. Further, we show that one of the cleaved forms of TBP can be reproduced in vitro by incubating TBP with cloned, purified poliovirus encoded protease 3C. Protease 3C is a poliovirus-encoded protease that specifically cleaves glutamine-glycine bonds in the viral polyprotein. The cleavage of TBP by protease 3C occurs directly. Finally, incubation of an uninfected cell-derived TBP-containing fraction (TFIID) with protease 3C results in significant inhibition of Pol II-mediated transcription in vitro. These results demonstrate that a cellular transcription factor can be directly cleaved both in vitro and in vivo by a viral protease and suggest a role of the poliovirus proteinase 3C in host cell Pol II-mediated transcription shutoff.


1993 ◽  
Vol 13 (7) ◽  
pp. 3841-3849
Author(s):  
B Zenzie-Gregory ◽  
A Khachi ◽  
I P Garraway ◽  
S T Smale

Promoters containing Sp1 binding sites and an initiator element but lacking a TATA box direct high levels of accurate transcription initiation by using a mechanism that requires the TATA-binding protein (TBP). We have begun to address the role of TBP during transcription from Sp1-initiator promoters by varying the nucleotide sequence between -14 and -33 relative to the start site. With each of several promoters containing different upstream sequences, we detected accurate transcription both in vitro and in vivo, but the promoter strengths varied widely, particularly with the in vitro assay. The variable promoter activities correlated with, but were not proportional to, the abilities of the upstream sequences to function as TATA boxes, as assessed by multiple criteria. These results confirm that accurate transcription can proceed in the presence of an initiator, regardless of the sequence present in the -30 region. However, the results reveal a role for this upstream region, most consistent with a model in which initiator-mediated transcription requires binding of TBP to the upstream DNA in the absence of a specific recognition sequence. Moreover, in vivo it appears that the promoter strength is modulated less severely by altering the -30 sequence, consistent with a previous suggestion that TBP is not rate limiting in vivo for TATA-less promoters. Taken together, these results suggest that variations in the structure of a core promoter might alter the rate-limiting step for transcription initiation and thereby alter the potential modes of transcriptional regulation, without severely changing the pathway used to assemble a functional preinitiation complex.


1999 ◽  
Vol 19 (1) ◽  
pp. 86-98 ◽  
Author(s):  
David E. Sterner ◽  
Patrick A. Grant ◽  
Shannon M. Roberts ◽  
Laura J. Duggan ◽  
Rimma Belotserkovskaya ◽  
...  

ABSTRACT SAGA, a recently described protein complex in Saccharomyces cerevisiae, is important for transcription in vivo and possesses histone acetylation function. Here we report both biochemical and genetic analyses of members of three classes of transcription regulatory factors contained within the SAGA complex. We demonstrate a correlation between the phenotypic severity of SAGA mutants and SAGA structural integrity. Specifically, null mutations in the Gcn5/Ada2/Ada3 or Spt3/Spt8 classes cause moderate phenotypes and subtle structural alterations, while mutations in a third subgroup, Spt7/Spt20, as well as Ada1, disrupt the complex and cause severe phenotypes. Interestingly, double mutants (gcn5Δ spt3Δand gcn5Δ spt8Δ) causing loss of a member of each of the moderate classes have severe phenotypes, similar tospt7Δ, spt20Δ, or ada1Δmutants. In addition, we have investigated biochemical functions suggested by the moderate phenotypic classes and find that first, normal nucleosomal acetylation by SAGA requires a specific domain of Gcn5, termed the bromodomain. Deletion of this domain also causes specific transcriptional defects at the HIS3 promoter in vivo. Second, SAGA interacts with TBP, the TATA-binding protein, and this interaction requires Spt8 in vitro. Overall, our data demonstrate that SAGA harbors multiple, distinct transcription-related functions, including direct TBP interaction and nucleosomal histone acetylation. Loss of either of these causes slight impairment in vivo, but loss of both is highly detrimental to growth and transcription.


2010 ◽  
Vol 431 (3) ◽  
pp. 391-402 ◽  
Author(s):  
Boon Shang Chew ◽  
Wee Leng Siew ◽  
Benjamin Xiao ◽  
Norbert Lehming

Tbp1, the TATA-binding protein, is essential for transcriptional activation, and Gal4 and Gcn4 are unable to fully activate transcription in a Saccharomyces cerevisiae TBP1E86D mutant strain. In the present study we have shown that the Tbp1E186D mutant protein is proteolytically instable, and we have isolated intragenic and extragenic suppressors of the transcription defects of the TBP1E186D mutant strain. The TBP1R6S mutation stabilizes the Tbp1E186D mutant protein and suppresses the defects of the TBP1E186D mutant strain. Furthermore, we found that the overexpression of the de-ubiquitinating enzyme Ubp3 (ubiquitin-specific protease 3) also stabilizes the Tbp1E186D mutant protein and suppresses of the defects of the TBP1E186D mutant strain. Importantly, the deletion of UBP3 and its cofactor BRE5 lead to increased degradation of wild-type Tbp1 protein and to defects in transcriptional activation by Gal4 and Gcn4. Purified GST (glutathione transferase)–Ubp3 reversed Tbp1 ubiquitination, and the deletion of UBP3 lead to the accumulation of poly-ubiquitinated species of Tbp1 in a proteaseome-deficient genetic background, demonstrating that Ubp3 reverses ubiquitination of Tbp1 in vitro and in vivo. Chromatin immunoprecipitation showed that Ubp3 was recruited to the GAL1 and HIS3 promoters upon the induction of the respective gene, indicating that protection of promoter-bound Tbp1 by Ubp3 is required for transcriptional activation.


2004 ◽  
Vol 24 (14) ◽  
pp. 6419-6429 ◽  
Author(s):  
Peter Eriksson ◽  
Debabrata Biswas ◽  
Yaxin Yu ◽  
James M. Stewart ◽  
David J. Stillman

ABSTRACT The Saccharomyces cerevisiae Nhp6 protein is related to the high-mobility-group B family of architectural DNA-binding proteins that bind DNA nonspecifically but bend DNA sharply. Nhp6 is involved in transcriptional activation by both RNA polymerase II (Pol II) and Pol III. Our previous genetic studies have implicated Nhp6 in facilitating TATA-binding protein (TBP) binding to some Pol II promoters in vivo, and we have used a novel genetic screen to isolate 32 new mutations in TBP that are viable in wild-type cells but lethal in the absence of Nhp6. The TBP mutations that are lethal in the absence of Nhp6 cluster in three regions: on the upper surface of TBP that may have a regulatory role, near residues that contact Spt3, or near residues known to contact either TFIIA or Brf1 (in TFIIIB). The latter set of mutations suggests that Nhp6 becomes essential when a TBP mutant compromises its ability to interact with either TFIIA or Brf1. Importantly, the synthetic lethality for some of the TBP mutations is suppressed by a multicopy plasmid with SNR6 or by an spt3 mutation. It has been previously shown that nhp6ab mutants are defective in expressing SNR6, a Pol III-transcribed gene encoding the U6 splicing RNA. Chromatin immunoprecipitation experiments show that TBP binding to SNR6 is reduced in an nhp6ab mutant. Nhp6 interacts with Spt16/Pob3, the yeast equivalent of the FACT elongation complex, consistent with nhp6ab cells being extremely sensitive to 6-azauracil (6-AU). However, this 6-AU sensitivity can be suppressed by multicopy SNR6 or BRF1. Additionally, strains with SNR6 promoter mutations are sensitive to 6-AU, suggesting that decreased SNR6 RNA levels contribute to 6-AU sensitivity. These results challenge the widely held belief that 6-AU sensitivity results from a defect in transcriptional elongation.


Sign in / Sign up

Export Citation Format

Share Document