Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro

1993 ◽  
Vol 13 (2) ◽  
pp. 1232-1237
Author(s):  
M E Clark ◽  
P M Lieberman ◽  
A J Berk ◽  
A Dasgupta

Host cell RNA polymerase II (Pol II)-mediated transcription is inhibited by poliovirus infection. This inhibition is correlated to a specific decrease in the activity of a chromatographic fraction which contains the transcription factor TFIID. To investigate the mechanism by which poliovirus infection results in a decrease of TFIID activity, we have analyzed a component of TFIID, the TATA-binding protein (TBP). Using Western immunoblot analysis, we show that TBP is cleaved in poliovirus-infected cells at the same time postinfection as when Pol II transcription is inhibited. Further, we show that one of the cleaved forms of TBP can be reproduced in vitro by incubating TBP with cloned, purified poliovirus encoded protease 3C. Protease 3C is a poliovirus-encoded protease that specifically cleaves glutamine-glycine bonds in the viral polyprotein. The cleavage of TBP by protease 3C occurs directly. Finally, incubation of an uninfected cell-derived TBP-containing fraction (TFIID) with protease 3C results in significant inhibition of Pol II-mediated transcription in vitro. These results demonstrate that a cellular transcription factor can be directly cleaved both in vitro and in vivo by a viral protease and suggest a role of the poliovirus proteinase 3C in host cell Pol II-mediated transcription shutoff.

1993 ◽  
Vol 13 (2) ◽  
pp. 1232-1237 ◽  
Author(s):  
M E Clark ◽  
P M Lieberman ◽  
A J Berk ◽  
A Dasgupta

Host cell RNA polymerase II (Pol II)-mediated transcription is inhibited by poliovirus infection. This inhibition is correlated to a specific decrease in the activity of a chromatographic fraction which contains the transcription factor TFIID. To investigate the mechanism by which poliovirus infection results in a decrease of TFIID activity, we have analyzed a component of TFIID, the TATA-binding protein (TBP). Using Western immunoblot analysis, we show that TBP is cleaved in poliovirus-infected cells at the same time postinfection as when Pol II transcription is inhibited. Further, we show that one of the cleaved forms of TBP can be reproduced in vitro by incubating TBP with cloned, purified poliovirus encoded protease 3C. Protease 3C is a poliovirus-encoded protease that specifically cleaves glutamine-glycine bonds in the viral polyprotein. The cleavage of TBP by protease 3C occurs directly. Finally, incubation of an uninfected cell-derived TBP-containing fraction (TFIID) with protease 3C results in significant inhibition of Pol II-mediated transcription in vitro. These results demonstrate that a cellular transcription factor can be directly cleaved both in vitro and in vivo by a viral protease and suggest a role of the poliovirus proteinase 3C in host cell Pol II-mediated transcription shutoff.


1997 ◽  
Vol 17 (12) ◽  
pp. 6784-6793 ◽  
Author(s):  
C S Bangur ◽  
T S Pardee ◽  
A S Ponticelli

The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by RNA polymerase II. We have used site-directed mutagenesis to assess the role of conserved amino acids in several important regions of yeast TFIIB. These include residues in the highly conserved amino-terminal region and basic residues in the D1 and E1 core domain alpha-helices. Acidic substitutions of residues K190 (D1) and K201 (E1) resulted in growth impairments in vivo, reduced basal transcriptional activity in vitro, and an inability to form stable TFIIB-TATA-binding protein-DNA (DB) complexes. Significantly, these mutants retained the ability to respond to acidic activators in vivo and to the Gal4-VP16 activator in vitro, supporting the view that these basic residues play a role in basal transcription. In addition, 14 single-amino-acid substitutions were introduced in the conserved amino-terminal region. Three of these mutants, the L50D, R64E, and R78L mutants, displayed altered growth properties in vivo and were compromised for supporting transcription in vitro. The L50D mutant was impaired for RNA polymerase II interaction, while the R64E mutant exhibited altered transcription start site selection both in vitro and in vivo and, surprisingly, was more active than the wild type in the formation of stable DB complexes. These results support the view that the amino-terminal domain is involved in the direct interaction between yeast TFIIB and RNA polymerase II and suggest that this domain may interact with DNA and/or modulate the formation of a DB complex.


1998 ◽  
Vol 18 (7) ◽  
pp. 3771-3781 ◽  
Author(s):  
Chi Li ◽  
James L. Manley

ABSTRACT The Drosophila homeodomain protein Even-skipped (Eve) is a transcriptional repressor, and previous studies have suggested that it functions by interfering with the basal transcription machinery. Here we describe experiments indicating that the mechanism of Eve repression involves a direct interaction with the TATA binding protein (TBP) that blocks binding of TBP-TFIID to the promoter. We first compared Eve activities in in vitro transcription systems reconstituted with either all the general transcription factors or only TBP, TFIIB, TFIIF30, and RNA polymerase II. In each case, equivalent and very efficient levels of repression were observed, indicating that no factors other than those in the minimal system are required for repression. We then show that Eve can function efficiently when its recognition sites are far from the promoter and that the same regions of Eve required for repression in vivo are necessary and sufficient for in vitro repression. This includes, in addition to an Ala-Pro-rich region, residues within the homeodomain. Using GAL4-Eve fusion proteins, we demonstrate that the homeodomain plays a role in repression in addition to DNA binding, which is to facilitate interaction with TBP. Single-round transcription experiments indicate that Eve must function prior to TBP binding to the promoter, suggesting a mechanism whereby Eve represses by competing with the TATA box for TBP binding. Consistent with this, excess TATA box-containing oligonucleotide is shown to specifically and efficiently disrupt the TBP-Eve interaction. Importantly, we show that Eve binds directly to TFIID and that this interaction can also be disrupted by the TATA oligonucleotide. We conclude that Eve represses transcription via a direct interaction with TBP that blocks TFIID binding to the promoter.


2017 ◽  
Author(s):  
Yoo Jin Joo ◽  
Scott B. Ficarro ◽  
Luis M. Soares ◽  
Yujin Chun ◽  
Jarrod A. Marto ◽  
...  

AbstractTFIID binds promoter DNA to recruit RNA polymerase II and other basal factors for transcription. Although the TATA-Binding Protein (TBP) subunit of TFIID is necessary and sufficient for in vitro transcription, the TBP-Associated Factor (TAF) subunits recognize downstream promoter elements, act as co-activators, and interact with nucleosomes. Here we show that transcription induces stable TAF binding to downstream promoter DNA, independent of upstream contacts, TBP, or other basal transcription factors. This transcription-dependent TAF complex promotes subsequent activator-independent transcription, and promoter response to TAF mutations in vivo correlates with the level of downstream, rather than overall, Taf1 crosslinking. We propose a new model in which TAFs function as reinitiation factors, accounting for the differential responses of promoters to various transcription factor mutations.


2007 ◽  
Vol 27 (8) ◽  
pp. 2886-2896 ◽  
Author(s):  
Arindam Dasgupta ◽  
Rebekka O. Sprouse ◽  
Sarah French ◽  
Pavel Aprikian ◽  
Robert Hontz ◽  
...  

ABSTRACT Mot1 is an essential, conserved, TATA-binding protein (TBP)-associated factor in Saccharomyces cerevisiae with well-established roles in the global control of RNA polymerase II (Pol II) transcription. Previous results have suggested that Mot1 functions exclusively in Pol II transcription, but here we report a novel role for Mot1 in regulating transcription by RNA polymerase I (Pol I). In vivo, Mot1 is associated with the ribosomal DNA, and loss of Mot1 results in decreased rRNA synthesis. Consistent with a direct role for Mot1 in Pol I transcription, Mot1 also associates with the Pol I promoter in vitro in a reaction that depends on components of the Pol I general transcription machinery. Remarkably, in addition to Mot1's role in initiation, rRNA processing is delayed in mot1 cells. Taken together, these results support a model in which Mot1 affects the rate and efficiency of rRNA synthesis by both direct and indirect mechanisms, with resulting effects on transcription activation and the coupling of rRNA synthesis to processing.


2001 ◽  
Vol 21 (5) ◽  
pp. 1737-1746 ◽  
Author(s):  
Susan M. Kraemer ◽  
Ryan T. Ranallo ◽  
Ryan C. Ogg ◽  
Laurie A. Stargell

ABSTRACT TFIIA and TATA-binding protein (TBP) associate directly at the TATA element of genes transcribed by RNA polymerase II. In vivo, TBP is complexed with approximately 14 TBP-associated factors (TAFs) to form the general transcription factor TFIID. How TFIIA and TFIID communicate is not well understood. We show that in addition to making direct contacts with TBP, yeast TAF40 interacts directly and specifically with TFIIA. Mutational analyses of the Toa2 subunit of TFIIA indicate that loss of functional interaction between TFIIA and TAF40 results in conditional growth phenotypes and defects in transcription. These results demonstrate that the TFIIA-TAF40 interaction is important in vivo and indicate a functional role for TAF40 as a bridging factor between TFIIA and TFIID.


2000 ◽  
Vol 20 (5) ◽  
pp. 1478-1488 ◽  
Author(s):  
Joseph V. Geisberg ◽  
Kevin Struhl

ABSTRACT Using a genetic screen, we isolated three TATA-binding protein (TBP) mutants that increase transcription from promoters that are repressed by the Cyc8-Tup1 or Sin3-Rpd3 corepressors or that lack an enhancer element, but not from an equivalently weak promoter with a mutated TATA element. Increased transcription is observed when the TBP mutants are expressed at low levels in the presence of wild-type TBP. These TBP mutants are unable to support cell viability, and they are toxic in strains lacking Rpd3 histone deacetylase or when expressed at higher levels. Although these mutants do not detectably bind TATA elements in vitro, genetic and chromatin immunoprecipitation experiments indicate that they act directly at promoters and do not increase transcription by titration of a negative regulatory factor(s). The TBP mutants are mildly defective for associating with promoters responding to moderate or strong activators; in addition, they are severely defective for RNA polymerase (Pol) III but not Pol I transcription. These results suggest that, with respect to Pol II transcription, the TBP mutants specifically increase expression from core promoters. Biochemical analysis indicates that the TBP mutants are unaffected for TFIID complex formation, dimerization, and interactions with either the general negative regulator NC2 or the N-terminal inhibitory domain of TAF130. We speculate that these TBP mutants have an unusual structure that allows them to preferentially access TATA elements in chromatin templates. These TBP mutants define a criterion by which promoters repressed by Cyc8-Tup1 or Sin3-Rpd3 resemble enhancerless, but not TATA-defective, promoters; hence, they support the idea that these corepressors inhibit the function of activator proteins rather than the Pol II machinery.


1996 ◽  
Vol 16 (4) ◽  
pp. 1641-1648 ◽  
Author(s):  
P A Wade ◽  
J A Jaehning

Signals from transcriptional activators to the general mRNA transcription apparatus are communicated by factors associated with RNA polymerase II or the TATA-binding protein (TBP). Currently, little is known about how gene-specific transcription repressors communicate with RNA polymerase II. We have analyzed the requirements for repression by the saccharomyces cerevisiae Leu3 protein (Leu3p) in a reconstituted transcription system. We have identified a complex form of TBP which is required for communication of the repressing signal. This TFIID-like complex contains a known TBP-associated protein, Mot1p, which has been implicated in the repression of a subset of yeast genes by genetic analysis. Leu3p-dependent repression can be reconstituted with purified Mot1p and recombinant TBP. In addition, a mutation in the Mot1 gene leads to partial derepression of the Leu3p-dependent LEU2 promoter. These in vivo and in vitro observations define a role for Mot1p as a transcriptional corepressor.


2004 ◽  
Vol 24 (10) ◽  
pp. 4104-4117 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Sungpil Yoon ◽  
Krishnamurthy Natarajan ◽  
Mark J. Swanson ◽  
...  

ABSTRACT Wild-type transcriptional activation by Gcn4p is dependent on multiple coactivators, including SAGA, SWI/SNF, Srb mediator, CCR4-NOT, and RSC, which are all recruited by Gcn4p to its target promoters in vivo. It was not known whether these coactivators are required for assembly of the preinitiation complex (PIC) or for subsequent steps in the initiation or elongation phase of transcription. We find that mutations in subunits of these coactivators reduce the recruitment of TATA binding protein (TBP) and RNA polymerase II (Pol II) by Gcn4p at ARG1, ARG4, and SNZ1, implicating all five coactivators in PIC assembly at Gcn4p target genes. Recruitment of Pol II at SNZ1 and ARG1 was eliminated by mutations in TBP or by deletion of the TATA box, indicating that TBP binding is a prerequisite for Pol II recruitment by Gcn4p. However, several mutations in SAGA subunits and deletion of SRB10 had a greater impact on promoter occupancy of Pol II versus TBP, suggesting that SAGA and Srb mediator can promote Pol II binding independently of their stimulatory effects on TBP recruitment. Our results reveal an unexpected complexity in the cofactor requirements for the enhancement of PIC assembly by a single activator protein.


Sign in / Sign up

Export Citation Format

Share Document