scholarly journals A Novel Yeast U2 snRNP Protein, Snu17p, Is Required for the First Catalytic Step of Splicing and for Progression of Spliceosome Assembly

2001 ◽  
Vol 21 (9) ◽  
pp. 3037-3046 ◽  
Author(s):  
Alexander Gottschalk ◽  
Cornelia Bartels ◽  
Gitte Neubauer ◽  
Reinhard Lührmann ◽  
Patrizia Fabrizio

ABSTRACT We have isolated and microsequenced Snu17p, a novel yeast protein with a predicted molecular mass of 17 kDa that contains an RNA recognition motif. We demonstrate that Snu17p binds specifically to the U2 small nuclear ribonucleoprotein (snRNP) and that it is part of the spliceosome, since the pre-mRNA and the lariat-exon 2 are specifically coprecipitated with Snu17p. Although the SNU17gene is not essential, its knockout leads to a slow-growth phenotype and to a pre-mRNA splicing defect in vivo. In addition, the first step of splicing is dramatically decreased in extracts prepared from thesnu17 deletion (snu17Δ) mutant. This defect is efficiently reversed by the addition of recombinant Snu17p. To investigate the step of spliceosome assembly at which Snu17p acts, we have used nondenaturing gel electrophoresis. In Snu17p-deficient extracts, the spliceosome runs as a single slowly migrating complex. In wild-type extracts, usually at least two distinct complexes are observed: the prespliceosome, or B complex, containing the U2 but not the U1 snRNP, and the catalytically active spliceosome, or A complex, containing the U2, U6, and U5 snRNPs. Northern blot analysis and affinity purification of the snu17Δ spliceosome showed that it contains the U1, U2, U6, U5, and U4 snRNPs. The unexpected stabilization of the U1 snRNP and the lack of dissociation of the U4 snRNP suggest that loss of Snu17p inhibits the progression of spliceosome assembly prior to U1 snRNP release and after [U4/U6.U5] tri-snRNP addition.

1992 ◽  
Vol 12 (10) ◽  
pp. 4279-4287 ◽  
Author(s):  
S F Jamison ◽  
A Crow ◽  
M A Garcia-Blanco

A mammalian splicing commitment complex was functionally defined by using a template commitment assay. This complex was partially purified and shown to be a required intermediate for complex A formation. The productive formation of this commitment complex required both splice sites and the polypyrimidine tract. U1 small nuclear ribonucleoprotein (snRNP) was the only spliceosomal U snRNP required for this formation. A protein factor, very likely U2AF, is probably involved in the formation of the splicing commitment complex. From the kinetics of appearance of complex A and complex B, it was previously postulated that complex A represents a functional intermediate in spliceosome assembly. Complex A was partially purified and shown to be a required intermediate for complex B (spliceosome) formation. Thus, a spliceosome pathway is for the first time supported by direct biochemical evidence: RNA+U1 snRNP+?U2 auxiliary factor+?Y----CC+U2 snRNP+Z----A+U4/6,5 snRNPs+ beta----B.


1995 ◽  
Vol 15 (1) ◽  
pp. 445-455 ◽  
Author(s):  
J Roy ◽  
B Zheng ◽  
B C Rymond ◽  
J L Woolford

Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.


1992 ◽  
Vol 12 (10) ◽  
pp. 4279-4287 ◽  
Author(s):  
S F Jamison ◽  
A Crow ◽  
M A Garcia-Blanco

A mammalian splicing commitment complex was functionally defined by using a template commitment assay. This complex was partially purified and shown to be a required intermediate for complex A formation. The productive formation of this commitment complex required both splice sites and the polypyrimidine tract. U1 small nuclear ribonucleoprotein (snRNP) was the only spliceosomal U snRNP required for this formation. A protein factor, very likely U2AF, is probably involved in the formation of the splicing commitment complex. From the kinetics of appearance of complex A and complex B, it was previously postulated that complex A represents a functional intermediate in spliceosome assembly. Complex A was partially purified and shown to be a required intermediate for complex B (spliceosome) formation. Thus, a spliceosome pathway is for the first time supported by direct biochemical evidence: RNA+U1 snRNP+?U2 auxiliary factor+?Y----CC+U2 snRNP+Z----A+U4/6,5 snRNPs+ beta----B.


2008 ◽  
Vol 28 (19) ◽  
pp. 5924-5936 ◽  
Author(s):  
AnYu Zhou ◽  
Alexander C. Ou ◽  
Aeri Cho ◽  
Edward J. Benz ◽  
Shu-Ching Huang

ABSTRACT RBM25 has been shown to associate with splicing cofactors SRm160/300 and assembled splicing complexes, but little is known about its splicing regulation. Here, we characterize the functional role of RBM25 in alternative pre-mRNA splicing. Increased RBM25 expression correlated with increased apoptosis and specifically affected the expression of Bcl-x isoforms. RBM25 stimulated proapoptotic Bcl-xS 5′ splice site (5′ ss) selection in a dose-dependent manner, whereas its depletion caused the accumulation of antiapoptotic Bcl-xL. Furthermore, RBM25 specifically bound to Bcl-x RNA through a CGGGCA sequence located within exon 2. Mutation in this element abolished the ability of RBM25 to enhance Bcl-xS 5′ ss selection, leading to decreased Bcl-xS isoform expression. Binding of RBM25 was shown to promote the recruitment of the U1 small nuclear ribonucleoprotein particle (snRNP) to the weak 5′ ss; however, it was not required when a strong consensus 5′ ss was present. In support of a role for RBM25 in modulating the selection of a 5′ ss, we demonstrated that RBM25 associated selectively with the human homolog of yeast U1 snRNP-associated factor hLuc7A. These data suggest a novel mode for Bcl-xS 5′ ss activation in which binding of RBM25 with exonic element CGGGCA may stabilize the pre-mRNA-U1 snRNP through interactions with hLuc7A.


1990 ◽  
Vol 10 (12) ◽  
pp. 6417-6425 ◽  
Author(s):  
N Abovich ◽  
P Legrain ◽  
M Rosbash

PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.


1993 ◽  
Vol 13 (3) ◽  
pp. 1883-1891
Author(s):  
W Y Tarn ◽  
K R Lee ◽  
S C Cheng

We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.


1995 ◽  
Vol 15 (11) ◽  
pp. 6341-6350 ◽  
Author(s):  
P J Hilleren ◽  
H Y Kao ◽  
P G Siliciano

The Saccharomyces cerevisiae SNP1 gene encodes a protein that shares 30% amino acid identity with the mammalian U1 small nuclear ribonucleoprotein particle protein 70K (U1-70K). We have demonstrated that yeast strains in which the SNP1 gene was disrupted are viable but exhibit greatly increased doubling times and severe temperature sensitivity. Furthermore, snp1-null strains are defective in pre-mRNA splicing. We have tested deletion alleles of SNP1 for their ability to complement these phenotypes. We found that the highly conserved RNA recognition motif consensus domain of Snp1 is not required for complementation of the snp1-null growth or splicing defects nor for the in vivo association with the U1 small nuclear ribonucleoprotein particle. However, the amino-terminal domain of Snp1, less strongly conserved, is necessary and sufficient for complementation.


1993 ◽  
Vol 13 (3) ◽  
pp. 1883-1891 ◽  
Author(s):  
W Y Tarn ◽  
K R Lee ◽  
S C Cheng

We have previously shown that the yeast PRP19 protein is associated with the spliceosome during the splicing reaction by immunoprecipitation studies with anti-PRP19 antibody. We have extended such studies by using extracts depleted of specific splicing factors to investigate the step of the spliceosome assembly process that PRP19 is involved in. PRP19 was not associated with the splicing complexes formed in U2- or U6-depleted extracts but was associated with the splicing complex formed in heat-inactivated prp2 extracts. This finding indicates that PRP19 becomes associated with the splicing complexes after or concomitant with binding of the U6 small nuclear ribonucleoprotein particle (snRNP) to the precursor RNA and before formation of the functional spliceosome. We further analyzed whether PRP19 is an integral component of snRNPs. We have constructed a strain in which an epitope of nine amino acid residues recognized by a well-characterized monoclonal antibody, 12CA5, is linked to the carboxyl terminus of the wild-type PRP19 protein. Immunoprecipitation of the splicing extracts with anti-PRP19 antibody or precipitation of the extracts prepared from the epitope-tagged strain with the 12CA5 antibody did not precipitate significant amounts of snRNAs. Addition of micrococcal nuclease-treated extracts to the PRP19-depleted extract restored its splicing activity. These results indicate that PRP19 is not tightly associated with any of the snRNAs required for the splicing reaction. No non-snRNP protein factor has been demonstrated to participate in either step of the spliceosome assembly pathway that PRP19 might be involved in. Thus, PRP19 represents a novel splicing factor.


1990 ◽  
Vol 10 (12) ◽  
pp. 6417-6425
Author(s):  
N Abovich ◽  
P Legrain ◽  
M Rosbash

PRP6 and PRP9 are two yeast genes involved in pre-mRNA splicing. Incubation at 37 degrees C of strains that carry temperature-sensitive mutations at these loci inhibits splicing, and in vivo experiments suggested that they might be involved in commitment complex formation (P. Legrain and M. Rosbash, Cell 57:573-583, 1989). To examine the specific role that the PRP6 and PRP9 products may play in splicing or pre-mRNA transport to the cytoplasm, we have characterized in vitro splicing and spliceosome assembly in extracts derived from prp6 and prp9 mutant strains. We have also characterized RNAs that are specifically immunoprecipitated with the PRP6 and PRP9 proteins. Both approaches indicate that PRP6 encodes a U4/U6 small nuclear ribonucleoprotein particle (snRNP) protein and that the PRP9 protein is required for a stable U2 snRNP-substrate interaction. The results are discussed with reference to the previously observed in vivo phenotypes of these mutants.


2021 ◽  
Author(s):  
Sarah R. Hansen ◽  
Ivan R Corrêa ◽  
Mark Scalf ◽  
Lloyd M. Smith ◽  
Aaron A Hoskins

In eukaryotes, splice sites define the introns of pre-mRNAs and must be recognized and excised with nucleotide precision by the spliceosome to make the correct mRNA product. In one of the earliest steps of spliceosome assembly, the U1 small nuclear ribonucleoprotein (snRNP) recognizes the 5' splice site (5' SS) through a combination of base pairing, protein-RNA contacts, and interactions with other splicing factors. Previous studies investigating the mechanisms of 5' SS recognition have largely been done in vivo or in cellular extracts where the U1/5' SS interaction is difficult to deconvolute from the effects of trans-acting factors or RNA structure. In this work we used co-localization single-molecule spectroscopy (CoSMoS) to elucidate the pathway of 5' SS selection by purified yeast U1 snRNP. We determined that U1 reversibly selects 5' SS in a sequence-dependent, two-step mechanism. A kinetic selection scheme enforces pairing at particular positions rather than overall duplex stability to achieve long-lived U1 binding. Our results provide a kinetic basis for how U1 may rapidly surveil nascent transcripts for 5' SS and preferentially accumulate at these sequences rather than on close cognates.


Sign in / Sign up

Export Citation Format

Share Document